Supporting Information

D–A Conjugated Polymers Based on Thieno[3,2-b]indole (TI) and 2,1,3-benzodiathiazole (BT) Derivatives: Synthesis, Characterization and Side-Chain Influence on Photovoltaic Properties

Hongyan Huang^a, Quan Li^a, Meng Qiu^b, Zheng Wang^a, Xinzhen Zhang^a, Shuli Liu^a, Nina Fu^a, Renqiang Yang^{b,*}, Baomin Zhao^{a,*}, Wei Huang^{a,c*}

^a Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

^b CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.

^eKey Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China.

Table of Contents

TGA Plot	Fig S1
SCLC Mobility	Fig S2 and Table
S1	
Device Optimization	Fig S3-S5
NMR Spectra	Fig S6-S16

Section 1. TGA plot.

Fig S1. TGA polts of **P1**, **P2** and **P3** at a heating rate of 10 °C min⁻¹ under nitrogen atmosphere.

Section 2. SCLC Mobility plot.

Fig S2. Current density (*J*)–voltage (*V*) profiles of Polymer/PC₇₁BM based devices with a weight ratio of (a) 1:3 and (b) 1:4 for the measurement of the hole mobilities under the optimized conditions. (symbols are experimental data for transport of hole, and the green line were fitted according to the space-charge-limited-current model).

Table S1. Charge transport properties for the Polymer: PC₇₁BM blend estimated by the SCLC model.

	D/A ratio	Mobility
Blend	(w/w)	cm ² V ⁻¹ s ⁻¹
P1:PC ₇₁ BM	1:3	4.76×10^{-7}
	1:4	1.31 × 10 ⁻⁶

P2·PC _a BM	1.3	4.98×10^{-7}
12.1C/[DIVI	1.5	2.28×10^{-7}
	1:4	2.58 × 10 ⁺
$P3:PC_{71}BM$	1:3	2.17×10^{-5}
	1:4	$2.84 imes10^{-5}$

Section 3. Device optimization.

Fig S3. *J*–*V* characteristics of Polymers: $PC_{71}BM$ (1:4) with cosolvents of DCB: CF (9:1, v/v) under thermal annealing 150 °C.

Fig S4. *J*–*V* characteristics of P1:PCBM (1:3), P2:PCBM (1:4) with addictive (DIO) as additive under thermal annealing at 150 °C.

Fig S5. J-V characteristics of P3:PC₇₁BM (1:4) with inverted configuration.

Section 4. NMR spectra.

Fig S6. ¹H and ¹³C NMR spectra of 2-(4-bromo-2-nitrophenyl)thiophene (2) in CDCl₃

Fig S7. ¹H and ¹³C NMR spectra of 6-bromo-4H-thieno[3,2-b]indole (3) in CDCl₃

Fig S10. ¹H and ¹³C NMR spectra of 4-(2-hexyldecyl)-2,6-bis(4,4,5,5- tetramethyl-1,3,2-dioxaborolan-2-yl)-4H-thieno[3,2-b]indole (M1) in CDCl₃

Fig S12. ¹H and ¹³C NMR spectra of 6-bromo-3-hexyl-4-(2-hexyldecyl)-4H-thieno[3,2-b]indole (8) in CDCl₃

Fig S13. ¹H and ¹³C NMR spectra of 2,6-dibromo-3-hexyl-4-(2-hexyldecyl)-4H-thieno[3,2-b]indole (M2) in $CDCl_3$

Fig S14. ¹H NMR spectra of the copolymer P1 in CDCl₃

Fig S15. ¹H NMR spectra of the copolymer P2 in CDCl₃

Fig S16. ¹H NMR spectra of the copolymer P3 in CDCl₃