Supporting Information

Synthesis, crystal structure, DFT/TDDFT calculation, photophysical properties and DNA binding studies of morpholino moiety ligand based two Cu(II) complexes in combination with carboxylates

Aparup Paul,^a Soumen Mistri,^a Apurba Bhunia, ^a Soumen Manna,^a Horst Puschmann,^b Subal Chandra Manna^{*,a}

^aDepartment of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721102, West Bengal, India, E-mail: scmanna@mail.vidyasagar.ac.in, Fax: (91) (03222) 275329.

^bDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, U.K.

Table 1S C-Hπ	t interactions	s in complexes	1 and 2 .
----------------------	----------------	----------------	-------------------------

СН	Cg(J)	HCg (Å)	X-HCg (°)	XCg (Å)
Complex 1				
C(10)-H(10A)	$Cg(8) \rightarrow C(23) - C(24) - C(25) - C(26) - C(27) - C(28)$	2.762	161	3.6364(19)
C(12)-H(12A)	$Cg(8) \rightarrow C(23) - C(24) - C(25) - C(26) - C(27) - C(28)$	3.670	122.85	4.28
Complex 2				
C(12)-H(12A)	$Cg(7) \rightarrow C(1) - C(2) - C(3) - C(4) - C(5) - C(6)$	3.200	133.85	3.95
C(27)-H(27B)	$Cg(8) \rightarrow C(21) - C(22) - C(23) - C(24) - C(25) - C(26)$	3.498	108.06	3.91

Table 2SList of selected excitation bands of HL calculated using different functionals(B3LYP, B3PW91, MPW1PW91) [CPCM model in methanolic, basis set, 6-31G (d-p)].

Functional	Wavelength	Oscillatory	Major Contribution	Assignment
	λ(nm)	strength (f)		
B3LYP	307.75	0.0064	HOMO→LUMO (90%)	n→π*
	282.20	0.0626	HOMO-3→LUMO (19%),	$\pi \rightarrow \pi^*$
			HOMO-2→LUMO (38%),	$n \rightarrow \pi^*, \pi \rightarrow \pi^*$
			HOMO-1→LUMO (32%)	$n \rightarrow \pi^*$
	278.02	0.0836	HOMO-1→LUMO (53%)	$n \rightarrow \pi^*$
	240.60	0.3769	HOMO-3→LUMO (58%),	$\pi \rightarrow \pi^*$
			HOMO-1→LUMO+1 (15%)	$n \rightarrow \pi^*$
	235.03	0.0169	HOMO-4→LUMO (97%)	n→π*
	230.55	0.0091	HOMO→LUMO+1 (96%)	n→π*
	210.38	0.3433	HOMO-2→LUMO+1 (17%),	$n \rightarrow \pi^*, \pi \rightarrow \pi^*$
			HOMO-1→LUMO+1 (56%)	$n \rightarrow \pi^*$
	206.45	0.0791	HOMO-3→LUMO+1 (19%),	$\pi \rightarrow \pi^*$
			HOMO-2→LUMO+1 (65%)	$n \rightarrow \pi^*, \pi \rightarrow \pi^*$

B3PW91	307.79	0.0054	HOMO→LUMO (92%)	n→π*
	283.38	0.0361	HOMO -3→LUMO (10%),	$\pi \rightarrow \pi^*$
			HOMO -2→LUMO (63%),	$n \rightarrow \pi^*, \pi \rightarrow \pi^*$
			HOMO -1→LUMO (18%)	$n \rightarrow \pi^*$
	277.68	0.1174	HOMO -1→LUMO (67%)	$n \rightarrow \pi^*$
	239.14	0.3284	HOMO -3→LUMO (63%),	$\pi \rightarrow \pi^*$
			HOMO -1 \rightarrow LUMO +1 (13%)	$n \rightarrow \pi^*$
	236.73	0.0754	HOMO -4→LUMO (90%)	n→π*
	230.51	0.0082	HOMO \rightarrow LUMO +1 (97%)	n→π*
	209.97	0.2568	HOMO -2 \rightarrow LUMO +1 (32%),	$n \rightarrow \pi^*, \pi \rightarrow \pi^*$
			HOMO -1 \rightarrow LUMO +1 (46%)	$n \rightarrow \pi^*$
	206.59	0.1588	HOMO -3 \rightarrow LUMO +1 (10%),	$\pi \rightarrow \pi^*$
			HOMO -2 \rightarrow LUMO +1 (59%)	$n \rightarrow \pi^*, \pi \rightarrow \pi^*$
MPW1PW91	289.70	0.0042	HOMO→LUMO (69%)	n→π*
	273.88	0.1068	HOMO -3→LUMO (20%),	$\pi \rightarrow \pi^*$
			HOMO -2→LUMO (12%),	$n \rightarrow \pi^*, \pi \rightarrow \pi^*$
			HOMO -1→LUMO (45%),	$n \rightarrow \pi^*$
			HOMO→LUMO (19%)	n→π*
	269.44	0.0616	HOMO -1→LUMO (40%)	$n \rightarrow \pi^*$
	234.67	0.3879	HOMO -3→LUMO (50%)	$\pi \rightarrow \pi^*$
	221.12	0.0025	HOMO -4→LUMO (99%)	n→π*
	216.25	0.0058	HOMO \rightarrow LUMO +1 (97%)	n→π*
	204.50	0.4503	HOMO -3→LUMO (12%),	$\pi \rightarrow \pi^*$
			HOMO $-1 \rightarrow$ LUMO $+1$ (65%)	$n \rightarrow \pi^*$

Table 3SList of selected excitation bands of complex 1 calculated in different functionals(B3LYP, B3PW91, MPWIPW91) in CPCM model in methanolic solution.

Functional	Wavelength λ (nm)	Oscillatory strength (f)	Major Contribution	Assignment [‡]
B3LYP	1058.05	0.0011	SOMO (β) \rightarrow LUMO (β) (67%)	LMCT
	696.84	0.0193	SOMO $-3(\beta) \rightarrow$ LUMO (β) (13%),	L ₁ MCT
			SOMO $-2(\beta) \rightarrow LUMO(\beta)(23\%)$	LMCT
	664.29	0.0047	SOMO $-8(\beta) \rightarrow LUMO (\beta) (20\%)$	L ₁ MCT
			SOMO $-4(\beta) \rightarrow$ LUMO (β) (13%)	LMCT
	598.75	0.0137	SOMO -18(β) \rightarrow LUMO (β) (13%),	IMCT
			SOMO -8 (β) \rightarrow LUMO (β) (15%)	L ₁ MCT
	543.19	0.01	SOMO $-15(\beta) \rightarrow \text{LUMO}(\beta) (12\%)$	LMCT
			SOMO -9 (β) \rightarrow LUMO (β) (13%)	LMCT
			SOMO (β) \rightarrow LUMO (β) (20%)	LMCT
	441.41	0.0006	SOMO $-1(\beta) \rightarrow$ LUMO (β) (91%)	L ₁ MCT
	416.76	0.0251	SOMO $-3(\beta) \rightarrow LUMO (\beta)(48\%)$	L ₁ MCT
	398.63	0.0058	SOMO -7(β) \rightarrow LUMO (β) (42%),	L ₁ MCT
			SOMO $-3(\beta) \rightarrow$ LUMO (β) (10%),	L_1MCT
			SOMO $-2(\beta) \rightarrow$ LUMO (β) (14%)	LMCT
	390.73	0.0085	SOMO $-8(\beta) \rightarrow LUMO \ (\beta)(10\%)$	L ₁ MCT
			SOMO -6 (β) \rightarrow LUMO (β)(14%)	LMCT
			SOMO $-2(\beta) \rightarrow$ LUMO (β) (19%)	LMCT
	373.78	0.0298	SOMO -4(β) \rightarrow LUMO (β) (34%),	LMCT
	362.47	0.0177	SOMO -7 (β) \rightarrow LUMO (β) (23%)	L ₁ MCT
			SOMO -6 (β) \rightarrow LUMO (β)(22%)	LMCT

	342.24	0.1845	SOMO (α) \rightarrow LUMO+1(α) (16%)	ILCT
			SOMO -18(β) \rightarrow LUMO (β) (14%)	IMCT
			SOMO -6(β) \rightarrow LUMO (β) (13%)	LMCT
			SOMO (β) \rightarrow LUMO+2(β) (15%)	ILCT
	333.83	0.005	SOMO $-2(\alpha) \rightarrow LUMO+1(\alpha) (80\%)$	ILCT
	317.72	0.0039	SOMO $-3(\beta) \rightarrow LUMO+1(\beta) (51\%)$	IL ₁ CT
	313.80	0.2182	SOMO -14(β) \rightarrow LUMO (β) (11%)	LMCT
			SOMO -8(β) \rightarrow LUMO (β) (31%)	L ₁ MCT
	295.20	0.019	SOMO $-4(\alpha) \rightarrow LUMO(\alpha)(37\%)$.	IL ₁ CT
			SOMO $-2(\alpha) \rightarrow LUMO(\alpha)(31\%)$	LL ₁ CT
	291.64	0.3891	SOMO $-1(\alpha) \rightarrow LUMO(\alpha)$ (23%).	ILCT
	_, _, _, _,		SOMO -1(β) \rightarrow LUMO+1(β) (20%)	IL ₁ CT
	289 59	0 1553	SOMO -1(α) \rightarrow LUMO+1(α) (35%)	LLCT
		011000	SOMO -1(β) \rightarrow LUMO+2(β) (14%)	LLCT
	275 27	0.0131	SOMO -5(α) \rightarrow LUMO (α) (40%)	
	213.21	0.0151	SOMO $-5(\beta) \rightarrow LUMO+1(\beta) (41\%)$	
			Somo -3(p) /Lomo - 1(p) (41/0)	
	268.81	0.001	SOMO 11(B) \rightarrow UIMO (B) (85%)	ІМСТ
	200.01	0.001	SOMO $10(R) \rightarrow LOMO(P)(85%)$	
	259.42	0.0273	SOMO -10(p) \rightarrow LOWO (p) (0270) SOMO -6(a) \rightarrow LUMO (a) (36%)	
	236.49	0.0034	SOMO $-6(0) \rightarrow LUMO + 1(0) (26\%)$	LL_1CT
	252 77	0.0020	SOMO $-0(p) \rightarrow LUMO + 1(p) (20\%)$	LL_1CI
	252.11	0.0028	SOMO -8(α) \rightarrow LUMO (α) (27%),	LL_1CI
			SOMO - $/(\alpha) \rightarrow LUMO(\alpha)(10\%),$	
			SOMO -6(β) \rightarrow LUMO+1(β) (18%)	LL_1CT
B3PW91	1018.92	0.0014	SOMO (B) \rightarrow LUMO (B) (66%)	LMCT
	689 52	0.0174	SOMO $_{-2}(\beta) \rightarrow I IIMO (\beta) (38\%)$	IMCT
	649.29	0.01/4	Some $2(p) \rightarrow \text{Leme}(p)(300)$	LMCT
	048.38	0.0040	$SOMO - \delta(p) \rightarrow LOMO(p)(21\%),$	
	501 12	0.0125	SOMO $-4(p) \rightarrow LUMO(p)(13\%)$	LMCT
	591.12	0.0125	SOMO -15(β) \rightarrow LUMO (β) (17%)	LMCI
	528.30	0.0108	SOMO $-15(\beta) \rightarrow LUMO (\beta) (10\%),$	LMCT
			SOMO -9(β) \rightarrow LUMO (β) (13%),	LMCT
			SOMO $-3(\beta) \rightarrow \text{LUMO}(\beta)(15\%),$	L_1MCT
			SOMO (β) \rightarrow LUMO (β) (22%)	LMCT
	425.03	0.0008	SOMO $-1(\beta) \rightarrow LUMO (\beta) (91\%)$	L_1MCT
	405.87	0.0283	SOMO $-3(\beta) \rightarrow LUMO(\beta)(59\%)$	L_1MCT
	389.27	0.004	SOMO -7(β) \rightarrow LUMO (β) (46%),	L_1MCT
			SOMO $-2(\beta) \rightarrow LUMO(\beta)(16\%)$	LMCT
	368.16	0.0277	SOMO $-4(\beta) \rightarrow LUMO(\beta)(40\%)$	LMCT
	356.86	0.0212	SOMO (a) \rightarrow LUMO (a) (26%)	II.CT
	550.00	0.0212	SOMO $(\alpha) \rightarrow LUMO(\alpha)(20,0),$ SOMO $_{7}(\beta) \rightarrow LUMO(\beta)(18\%)$	
			SOMO $-5(\beta) \rightarrow LUMO(\beta)(16\%)$	LMCT
	35/1 9/1	0 0069	SOMO $(\alpha) \rightarrow UIMO (\alpha) (60\%)$	
	229.29	0.0007	Some $(u) \rightarrow LOMO(u)(0)/0)$	
	558.58	0.1120	SOMO $-2(\alpha) \rightarrow \text{LUMO} + 1(\alpha)$	LL_1CI
			(25%),	LMCI
			SOMO -5(β) \rightarrow LUMO (β) (10%),	ILCI
	225.00	0.0511	SOMO (β) \rightarrow LUMO +2(β) (10%)	
	335.98	0.0/11	SOMO $-2(\alpha) \rightarrow LUMO + I(\alpha)$	LL_1CT
	017 50	0.001	(41%)	IL CT
	317.50	0.001	SOMO $-3(\beta) \rightarrow LUMO + I(\beta)$	IL ₁ CT
			(29%),	LL_1CT
			SOMO $-2(\beta) \rightarrow LUMO + 1(\beta)$	
			(27%)	
	308.91	0.273	SOMO -14(β) \rightarrow LUMO (β) (15%),	LMCT
			SOMO $-8(\beta) \rightarrow LUMO(\beta)(39\%)$	L_1MCT
	295.89	0.0087	SOMO $-4(\alpha) \rightarrow LUMO(\alpha) (34\%)$,	IL ₁ CT
			SOMO $-3(\alpha) \rightarrow \text{LUMO}(\alpha)$ (14%),	LL ₁ CT
			SOMO $-2(\alpha) \rightarrow \text{LUMO}(\alpha) (31\%)$	LL_1CT

	287.61	0.4724	SOMO $-1(\alpha) \rightarrow$ LUMO (α) (29%),	IL ₁ CT
			SOMO $-1(\beta) \rightarrow LUMO + 1(\beta)$ (27%)	IL ₁ CT
	285.81	0.0556	SOMO $-1(\alpha) \rightarrow LUMO + 1(\alpha)$ (55%)	L ₁ LCT
	271.41	0.0135	SOMO -6(α) \rightarrow LUMO (α) (40%),	IL ₁ CT
			SOMO $-6(\beta) \rightarrow LUMO + 1(\beta)$ (41%)	IL ₁ CT
	264.41	0.0009	SOMO $-11(\beta) \rightarrow \text{LUMO}(\beta)$ (71%), SOMO $-10(\beta) \rightarrow \text{LUMO}(\beta)$ (10%)	LMCT L1MCT
	257.82	0.0048	SOMO $-5(\alpha) \rightarrow \text{LUMO}(\alpha)$ (29%), SOMO $-5(\beta) \rightarrow \text{LUMO} + 1(\beta)$ (38%)	LL ₁ CT LL ₁ CT
	255.13	0.0833	SOMO $-5(\alpha) \rightarrow \text{LUMO} + 1(\alpha)$ (32%)	ILCT
	252.56	0.0005	SOMO -10(β) \rightarrow LUMO (β) (28%)	L ₁ MCT
	251.97	0.0013	SOMO $-10(\beta) \rightarrow LUMO (\beta) (41\%)$	L ₁ MCT
MPW1PW91	953.49	0.0017	SOMO (β) \rightarrow LUMO (β) (49%)	LMCT
	692.45	0.0107	SOMO $-15(\beta) \rightarrow LUMO(\beta)(10\%),$	MMCT
	616 15	0.0032	SOMO -14(β) \rightarrow LUMU (β) (18%) SOMO -22(β) \rightarrow LUMO (β) (129()	LMCT
	040.43	0.0052	SOMO -22(p) \rightarrow LUMO (p) (12%), SOMO -8(B) \rightarrow LUMO (R) (21%)	
	591 63	0.0061	SOMO -15(β) \rightarrow LUMO (β) (21%)	MMCT
	491 47	0.0129	SOMO (B) \rightarrow LUMO (B) (41%)	LMCT
	368.62	0.0016	SOMO -1(β) \rightarrow LUMO (β) (90%)	LIMCT
	359.66	0.0262	SOMO $-2(\beta) \rightarrow LUMO(\beta)(28\%)$	LMCT
	227.00	0.0202	SOMO (β) \rightarrow LUMO +2(β) (11%)	ILCT
	355.84	0.0527	SOMO (α) \rightarrow LUMO +1(α) (18%),	ILCT
			SOMO $-6(\beta) \rightarrow LUMO (\beta) (11\%),$	LMCT
			SOMO $-3(\beta) \rightarrow LUMO (\beta) (17\%),$	L ₁ MCT
	346.84	0.0252	SOMO $-7(\beta) \rightarrow \text{LUMO}(\beta)(37\%),$	L_1MCT
			SOMO $-3(\beta) \rightarrow \text{LUMO}(\beta)(19\%),$	L_1MCT
	33/ 80	0.0326	SOMO $-2(\beta) \rightarrow LUMO(\beta)(14\%)$ SOMO $-2(\beta) \rightarrow LUMO(\beta)(23\%)$	LMCT
	373 11	0.0320	SOMO $-2(p) \rightarrow \text{LOMO}(p)(23\%)$ SOMO $4(\beta) \rightarrow \text{LUMO}(\beta)(41\%)$	
	312.511	0.1365	SOMO $-7(B) \rightarrow LUMO(B)(140/)$	LMCT
	512.00	0.034	SOMO - $f(\beta) \rightarrow LUMO (\beta) (14\%),$ SOMO - $6(\beta) \rightarrow LUMO (\beta) (44\%)$	
	299.88	0.0018	SOMO $-4(\alpha) \rightarrow LUMO(\alpha)$ (12%).	IL_1CT
		-	SOMO $-3(\beta) \rightarrow LUMO + 1(\beta)$	LL ₁ CT
			(51%)	
	288.85	0.6984	SOMO $-8(\beta) \rightarrow LUMO(\beta)(32\%)$	L_1MCT
	278.45	0.255	SOMO $-1(\alpha) \rightarrow \text{LUMO}(\alpha)$ (25%),	IL ₁ CT
			SOMO $-8(\beta) \rightarrow LUMO(\beta)(20\%),$	L_1MCT
			SOMO -1(β) \rightarrow LUMO +1(β) (24%)	IL_1CT
	271.21	0.0625	SOMO $-9(\beta) \rightarrow \text{LUMO}(\beta) (46\%)$	LMCT
	264.40	0.0136	SOMO $-5(\alpha) \rightarrow$ LUMO (α) (39%),	IL ₁ CT
			SOMO $-5(\beta) \rightarrow \text{LUMO} + 1(\beta)$ (40%)	IL ₁ CT
	242.26	0.0175	SOMO $-6(\alpha) \rightarrow \text{LUMO}(\alpha)$ (24%),	LL ₁ CT
			SOMO $-6(\beta) \rightarrow LUMO + 1(\beta)$ (15%)	LL ₁ CT
	240.53	0.0016	SOMO $-11(\beta) \rightarrow LUMO (\beta) (81\%)$	LL ₁ CT
	237.78	0.0027	SOMO -8(α) \rightarrow LUMO (α) (31%), SOMO -6(β) \rightarrow LUMO +1(β) (22%)	LL_1CT
	234 53	0.0161	SOMO - $0(p) \rightarrow LUMO + 1(p) (23\%)$ SOMO - $7(q) \rightarrow LUMO (q) (17\%)$	LL ₁ CT
	231.33	0.0101	SOMO -7(β) \rightarrow LUMO +1(β)	IL ₁ CT

(29%),	LL ₁ CT
SOMO $-6(\beta) \rightarrow LUMO +1$	(β)
 (21%)	

[‡]IMCT = Intra metal charge transfer, LMCT = Schiff base to metal charge transfer, L_1MCT = carboxylate to metal charge transfer, LL_1CT = Schiff base to carboxylate charge transfer transition, IL_1CT = Intra carboxylate charge transfer, ILCT= Intra Schiff base charge transfer, L_1LCT =carboxylate to Schiff base charge transfer.

Table 4SList of selected excitation bands of complex 2 calculated in different functionals(B3LYP, B3PW91, MPWIPW91) in CPCM model in methanolic solution.

Functional	Wavelengt h λ(nm)	Oscillatory strength (<i>f</i>)	Major Contribution	Assignment [‡]
B3LYP	1067.07	0.001	SOMO (β) \rightarrow LUMO (β) (66%)	LMCT
	694.00	0.0177	SOMO $-12(\beta) \rightarrow$ LUMO (β) (19%),	LMCT
			SOMO $-3(\beta) \rightarrow$ LUMO (β) (15%)	L ₁ MCT
	670.03	0.0047	SOMO $-8(\beta) \rightarrow$ LUMO (β) (18%)	L ₁ MCT
	595.52	0.0132	SOMO -14(β) \rightarrow LUMO (β) (10%),	LMCT
			SOMO -8(β) \rightarrow LUMO (β) (15%)	L_1MCT
	547.70	0.0102	SOMO (β) \rightarrow LUMO (β) (19%)	LMCT
	418.38	0.0198	SOMO $-3(\beta) \rightarrow$ LUMO (β) (42%),	L_1MCT
			SOMO $-2(\beta) \rightarrow LUMO(\beta)(17\%)$	LMCT
	403.06	0.0034	SOMO $-7(\beta) \rightarrow$ LUMO (β) (17%),	L_1MCT
			SOMO $-2(\beta) \rightarrow$ LUMO (β) (21%),	LMCT
			SOMO $-1(\beta) \rightarrow$ LUMO (β) (45%)	L_1MCT
	397.87	0.0019	SOMO $-5(\beta) \rightarrow$ LUMO (β) (10%),	LMCT
			SOMO $-3(\beta) \rightarrow$ LUMO (β) (13%),	L_1MCT
			SOMO $-1(\beta) \rightarrow$ LUMO (β) (33%)	L_1MCT
	391.86	0.0056	SOMO -6(β) \rightarrow LUMO (β) (13%),	LMCT
			SOMO -4(β) \rightarrow LUMO (β) (13%),	L_1MCT
			SOMO $-2(\beta) \rightarrow LUMO(\beta)(15\%)$	LMCT
	374.78	0.0287	SOMO -5(β) \rightarrow LUMO (β) (24%)	LMCT
	366.00	0.0108	SOMO -4(β) \rightarrow LUMO (β) (33%)	L_1MCT
	355.96	0.0108	SOMO - $7(\beta) \rightarrow LUMO(\beta)(37\%),$	L ₁ MCT
			SOMO -5(β) \rightarrow LUMO (β) (12%),	LMCT
	241.00	0.1500	SOMO -4(β) \rightarrow LUMO (β) (26%)	L_1MCT
	341.90	0.1582	SOMO (α) \rightarrow LUMO (α) (17%),	ILCT
			SOMO -17(β) \rightarrow LUMO (β) (10%),	LMCT
			SOMO -6(β) \rightarrow LUMO (β) (12%),	LMCT
	222.20	0.0024	SOMO (β) \rightarrow LUMO +1(β) (16%)	ILCI
	333.29	0.0034	SOMO -1(α) \rightarrow LUMO (α) (87%)	
	512.48	0.1074	SOMO -13(p) \rightarrow LUMO (p) (13%),	
	205 61	0.0021	SOMO (a) \rightarrow LUMO (b) (40%)	
	204.22	0.0021	SOMO (α) \rightarrow LUMO +1(α) (85%)	$LL_1 CI$
	294.22	0.0439	SOMO -11(p) \rightarrow LUMO (p) (14%),	
			SOMO $-9(p) \rightarrow LUMO (p) (20%),$	
			SOMO $2(\beta) \rightarrow LOMO + 1(\beta) (1270),$	
	282 50	0.0002	$SOMO - 2(p) \rightarrow LOMO + 1(p) (1878)$	
	282.39	0.0002	SOMO $-1(\alpha) \rightarrow LUMO + 1(\alpha) (2278)$, SOMO $-3(\beta) \rightarrow LUMO + 2(\beta) (48\%)$	
	260 61	0.001	SOMO $4(\alpha) \rightarrow UMO (\alpha) (15\%)$	
	207.01	0.001	SOMO -2(α) \rightarrow LUMO (α) (15%),	
			SOMO -10(β) \rightarrow LUMO (β) (46%)	
	269 38	0.0009	SOMO -10(β) \rightarrow LUMO (β) (40%)	LMCT
	252.50	0.0213	SOMO $A(R) \rightarrow UIMO \pm 2(R) (200/)$	
	233.13	0.0213	SOMO $-4(p) \rightarrow LOMO +2(p) (20\%)$ SOMO $-2(\beta) \rightarrow LUMO +2(\beta) (22\%)$	
	240.14	0.0042	SOMO $7(\beta) \rightarrow LUMO \pm 1(\beta) (400/)$	
	277.71	0.0207	20110 - /(h) , LOMO - I(h) (49/0)	

B3PW91	1028.56	0.0013	SOMO (β) \rightarrow LUMO (β) (65%)	LMCT
	689.21	0.0156	SOMO $-12(\beta) \rightarrow LUMO (\beta) (17\%)$,	LMCT
			SOMO $-2(\beta) \rightarrow LUMO(\beta)(33\%)$	L ₁ MCT
	651.61	0.0044	SOMO $-8(\beta) \rightarrow LUMO(\beta)(19\%)$	L ₁ MCT
	589.30	0.012	SOMO $-8(\beta) \rightarrow LUMO(\beta)(15\%)$	L ₁ MCT
	532.16	0.0111	SOMO (β) \rightarrow LUMO (β) (22%)	LMCT
	474.79	0.0003	SOMO (β) \rightarrow LUMO +1(β) (47%)	ILCT
	407.22	0.0215	SOMO $-3(\beta) \rightarrow$ LUMO (β) (53%)	L ₁ MCT
	390.90	0.0044	SOMO -7(β) \rightarrow LUMO (β) (29%),	L ₁ MCT
			SOMO $-1(\beta) \rightarrow LUMO(\beta)(11\%)$	L ₁ MCT
	386.43	0.0031	SOMO $-6(\beta) \rightarrow LUMO(\beta)(14\%)$,	LMCT
			SOMO $-3(\beta) \rightarrow LUMO(\beta)(10\%)$,	L ₁ MCT
			SOMO $-1(\beta) \rightarrow LUMO(\beta)(39\%)$	L ₁ MCT
	369.08	0.0282	SOMO $-6(\beta) \rightarrow LUMO(\beta)(19\%)$,	LMCT
			SOMO $-5(\beta) \rightarrow LUMO(\beta)(23\%)$,	LMCT
			SOMO $-4(\beta) \rightarrow LUMO(\beta)(13\%)$	L ₁ MCT
	358.13	0.0201	SOMO $-6(\beta) \rightarrow LUMO(\beta)(21\%)$	LMCT
	345.96	0.0157	SOMO -7(β) \rightarrow LUMO (β) (31%),	L ₁ MCT
			SOMO $-4(\beta) \rightarrow LUMO(\beta)(30\%)$	L ₁ MCT
	337.56	0.1081	SOMO $-1(\alpha) \rightarrow LUMO(\alpha) (22\%)$,	ILCT
			SOMO (α) \rightarrow LUMO (α) (10%),	ILCT
			SOMO $-6(\beta) \rightarrow LUMO(\beta)(11\%)$,	LMCT
			SOMO (β) \rightarrow LUMO +1(β) (11%)	ILCT
	335.40	0.0412	SOMO $-1(\alpha) \rightarrow LUMO(\alpha)$ (66%)	ILCT
	307.42	0.1163	SOMO -13(β) \rightarrow LUMO (β) (16%),	LMCT
			SOMO $-8(\beta) \rightarrow LUMO(\beta)(43\%)$	L ₁ MCT
	303.41	0.0016	SOMO (α) \rightarrow LUMO +1(α) (79%),	LL ₁ CT
			SOMO (β) \rightarrow LUMO +2(β) (12%)	LL ₁ CT
	286.25	0.0308	SOMO $-11(\beta) \rightarrow LUMO (\beta) (19\%)$,	LMCT
			SOMO $-9(\beta) \rightarrow \text{LUMO}(\beta)(34\%)$	LMCT
	281.42	0.0002	SOMO $-1(\alpha) \rightarrow \text{LUMO} + 1(\alpha)$ (23%),	LL ₁ CT
			SOMO $-3(\beta) \rightarrow$ LUMO $+2(\beta)$ (18%),	IL ₁ CT
			SOMO $-2(\beta) \rightarrow \text{LUMO} + 2(\beta) (34\%)$	IL ₁ CT
	265.15	0.0011	SOMO $-10(\beta) \rightarrow LUMO (\beta) (83\%)$	LMCT
	263.76	0.0356	SOMO $-3(\beta) \rightarrow \text{LUMO} + 1(\beta)(19\%),$	ILCT
			SOMO $-1(\beta) \rightarrow LUMO + 1(\beta) (50\%)$	L ₁ LCT
	261.52	0.0027	SOMO $-1(\alpha) \rightarrow$ LUMO $+1(\alpha)$ (40%)	LL ₁ CT
	255.74	0.1082	SOMO -6(α) \rightarrow LUMO (α) (23%)	ILCT
	249.24	0.0067	SOMO $-5(\alpha) \rightarrow \text{LUMO} + 1(\alpha) (16\%)$	L ₁ LCT
	246.97	0.0422	SOMO $-12(\beta) \rightarrow LUMO (\beta) (28\%)$,	LMCT
			SOMO -11(β) \rightarrow LUMO (β) (13%)	LMCT
	243.80	0.0124	SOMO -18(β) \rightarrow LUMO (β) (11%),	L ₁ MCT
			SOMO $-13(\beta) \rightarrow LUMO (\beta) (32\%)$	LMCT
MPW1PW91	960.66	0.0016	SOMO (β) \rightarrow LUMO (β) (49%)	LMCT
	691.29	0.0096	SOMO $-13(\beta) \rightarrow LUMO (\beta) (18\%)$	LMCT
	649.39	0.0028	SOMO $-8(\beta) \rightarrow LUMO (\beta) (19\%)$	L ₁ MCT
	589.72	0.0056	SOMO -27(β) \rightarrow LUMO (β) (31%),	MMCT
			SOMO -15(β) \rightarrow LUMO (β) (18%)	LMCT
	493.74	0.0133	SOMO (β) \rightarrow LUMO (β) (41%)	LMCT
	359.97	0.0181	SOMO $-3(\beta) \rightarrow$ LUMO (β) (20%),	L ₁ MCT

		SOMO $-2(\beta) \rightarrow LUMO (\beta) (32\%)$	LMCT
356.35	0.0489	SOMO (α) \rightarrow LUMO (α) (18%),	ILCT
		SOMO -7(β) \rightarrow LUMO (β) (10%),	L ₁ MCT
		SOMO $-3(\beta) \rightarrow$ LUMO (β) (18%),	L ₁ MCT
		SOMO (β) \rightarrow LUMO +1(β) (18%)	ILCT
346.74	0.0173	SOMO -7(β) \rightarrow LUMO (β) (33%),	L ₁ MCT
		SOMO -4(β) \rightarrow LUMO (β) (15%),	L ₁ MCT
		SOMO $-2(\beta) \rightarrow LUMO (\beta) (15\%)$	LMCT
337.88	0.0005	SOMO $-5(\beta) \rightarrow LUMO (\beta) (10\%),$	LMCT
		SOMO $-1(\beta) \rightarrow LUMO (\beta) (76\%)$	L ₁ MCT
334.94	0.0303	SOMO $-2(\beta) \rightarrow LUMO (\beta) (24\%)$	LMCT
323.09	0.1177	SOMO $-5(\beta) \rightarrow LUMO (\beta) (37\%)$	LMCT
313.54	0.033	SOMO $-6(\beta) \rightarrow LUMO (\beta) (47\%)$,	LMCT
		SOMO $-4(\beta) \rightarrow LUMO (\beta) (10\%)$	L ₁ MCT
305.15	0.0031	SOMO $-4(\beta) \rightarrow LUMO (\beta) (54\%)$	L ₁ MCT
287.49	0.0035	SOMO (α) \rightarrow LUMO +1(α) (46%),	LL ₁ CT
		SOMO (β) \rightarrow LUMO +2(β) (35%)	LL ₁ CT
283.92	0.1007	SOMO -8(β) \rightarrow LUMO (β) (45%)	L ₁ MCT
271.94	0.0349	SOMO $-11(\beta) \rightarrow \text{LUMO} (\beta) (15\%),$	LMCT
		SOMO $-9(\beta) \rightarrow LUMO (\beta) (47\%)$	LMCT
269.58	0.0004	SOMO $-5(\alpha) \rightarrow \text{LUMO} + 1(\alpha) (11\%),$	IL ₁ CT
		SOMO $-1(\alpha) \rightarrow$ LUMO $+1(\alpha)$ (16%),	LL ₁ CT
		SOMO $-3(\beta) \rightarrow LUMO + 2(\beta) (44\%)$	IL ₁ CT
250.21	0.0535	SOMO $-2(\alpha) \rightarrow \text{LUMO}(\alpha)$ (59%)	L ₁ LCT
245.10	0.0092	SOMO $-4(\beta) \rightarrow LUMO + 2(\beta) (30\%)$	IL ₁ CT
240.84	0.0025	SOMO -10(β) \rightarrow LUMO (β) (85%)	LMCT
233.16	0.3274	SOMO $-2(\alpha) \rightarrow \text{LUMO} + 1(\alpha) (24\%),$	IL ₁ CT
		SOMO $-2(\beta) \rightarrow \text{LUMO} + 2(\beta) (27\%),$	LL ₁ CT

IMCT = Intra metal charge transfer, LMCT = Schiff base to metal charge transfer, L₁MCT = carboxylate to metal charge transfer, LL₁CT = Schiff base to carboxylate charge transfer transition, IL₁CT = Intra carboxylate charge transfer, ILCT=Intra Schiff base charge transfer, L₁LCT=carboxylate to Schiff base charge transfer.

Complex	Exp		Calcd	
		B3LYP	B3PW91	MPW1PW91
	222	-	-	-
1	242	-	-	-
	269	268.81	271.41	271.21
	365	362.47	368.16	368.62
	204	-	-	-
2	236	-	-	-
	270	269.61	265.15	269.58
	365	366.00	369.08	359.97

Table 5S Experimental and calculated[§] (using B3LYP, B3PW91, MPW1PW91 functionals) UV-vis spectral bands of complexes **1** and **2**.

[§]Using conductor-like polarizable continuum model (CPCM) in methanol; basis set, LanL2DZ.

Exp (nm)	Calcd (nm)			
	B3LYP	B3PW91	MPW1PW91	
400	-	-	-	
316	-	-	-	
278	278.02	277.68	273.88	
254	240.60	239.14	234.67	
214	210.38	209.97	216.25	

Table 6S Experimental and calculated^[j] (using B3LYP, B3PW91, MPW1PW91functionals) electronic spectral bands of HL.

^[j]Basis set, 6-31G (d-p); using conductor-like polarizable continuum model (CPCM) in methanol.

Table 7S List of theoretically [basis set LanL2DZ, CPCM model in methanol] possible electronic transitions for model compound $[Cu(L)(NO_3)]$.

Excitation	Wavelength	Oscillatory	Major Contribution	Assignment [‡]
	λ(nm)	strength (f)		
1	1170.75	0.0005	$SOMO(\beta) \rightarrow LUMO(\beta)$	LMCT
2	661.13	0.011	SOMO -13(β) \rightarrow LUMO (β)(17%),	LMCT
			SOMO $-3(\beta) \rightarrow$ LUMO (β)(12%),	LMCT
			SOMO -1(β) \rightarrow LUMO (β)(13%)	LMCT
3	630.66	0.0036	SOMO -5(β) \rightarrow LUMO (β)(21%)	L ₁ MCT
4	591.94	0.0257	SOMO -9(β) \rightarrow LUMO (β)(10%),	L_1MCT
			SOMO -3(β) \rightarrow LUMO (β)(13%),	LMCT
			SOMO (β) \rightarrow LUMO (β)(12%)	LMCT
5	544.40	0.0039	SOMO -23(β) \rightarrow LUMO (β)(17%),	IMCT
			SOMO -14(β) \rightarrow LUMO (β)(23%)	LMCT
7	433.73	0.0029	SOMO -1(β) \rightarrow LUMO (β)(63%)	LMCT
9	405.57	0.0004	SOMO -3(β) \rightarrow LUMO (β)(24%),	LMCT
			SOMO $-2(\beta) \rightarrow$ LUMO (β)(73%)	LMCT
13	384.85	0.0434	SOMO (α) \rightarrow LUMO +1(α) (12%),	ILCT
			SOMO -3(β) \rightarrow LUMO (β)(16%),	LMCT
			SOMO (β) \rightarrow LUMO +2(β)(12%)	ILCT
15	358.09	0.0594	SOMO -4(β) \rightarrow LUMO (β)(38%)	L ₁ MCT
16	349.101	0.0005	SOMO -4(α) \rightarrow LUMO (α) (12%),	L_1MCT
			SOMO -1(α) \rightarrow LUMO (α) (23%),	LMCT
			SOMO $-4(\beta) \rightarrow LUMO + 1(\beta)(49\%)$	IL_1CT
17	340.00	0.136	SOMO (α) \rightarrow LUMO +1(α) (25%),	ILCT
			SOMO (β) \rightarrow LUMO +2(β)(23%)	ILCT
19	324.12	0.0003	SOMO $-1(\alpha) \rightarrow$ LUMO $+1(\alpha)$ (86%)	ILCT
20	318.24	0.0127	SOMO -6(β) \rightarrow LUMO (β)(48%)	L_1MCT
22	305.12	0.0004	SOMO $-1(\alpha) \rightarrow$ LUMO (α) (51%)	LMCT
23	298.55	0.0108	SOMO -7(β) \rightarrow LUMO (β)(59%),	L_1MCT
			SOMO $-5(\beta) \rightarrow$ LUMO (β)(17%)	L_1MCT
25	289.72	0.016	SOMO -9(β) \rightarrow LUMO (β)(38%),	L_1MCT
			SOMO $-1(\beta) \rightarrow LUMO + 1(\beta)(12\%)$	LL_1CT

28	285.47	0.0066	SOMO -8(β) \rightarrow LUMO (β)(77%)	LMCT
31	275.06	0.0281	SOMO -12(β) \rightarrow LUMO (β)(13%),	LMCT
			SOMO -10(β) \rightarrow LUMO (β)(46%)	L ₁ MCT
32	274.57	0.0033	SOMO $-3(\alpha) \rightarrow$ LUMO (α) (45%),	LMCT
			SOMO $-3(\beta) \rightarrow \text{LUMO} + 1(\beta)(30\%)$	LL ₁ CT
34	271.48	0.0942	SOMO -10(β) \rightarrow LUMO (β)(17%)	L ₁ MCT
35	266.52	0.0077	SOMO -12(β) \rightarrow LUMO (β)(12%),	LMCT
			SOMO -11(β) \rightarrow LUMO (β)(51%)	LMCT
37	259.00	0.0002	SOMO -10(α) \rightarrow LUMO (α) (17%),	L ₁ MCT
			SOMO -5(α) \rightarrow LUMO (α) (33%),	LMCT
			SOMO $-10(\beta) \rightarrow LUMO + 1(\beta)(23\%)$	IL ₁ CT
38	258.52	0.0016	SOMO -13(β) \rightarrow LUMO (β)(14%),	LMCT
			SOMO -12(β) \rightarrow LUMO (β)(25%)	LMCT
42	251.85	0.0884	SOMO $-3(\alpha) \rightarrow \text{LUMO} + 1(\alpha) (33\%),$	ILCT
			SOMO $-2(\beta) \rightarrow \text{LUMO} + 2(\beta)(36\%)$	ILCT
47	238.76	0.0045	SOMO -15(β) \rightarrow LUMO (β)(36%)	LMCT

[‡]IMCT = Intra metal charge transfer, LMCT = Schiff base to metal charge transfer, L_1MCT = Nitrate to metal charge transfer, LL_1CT = Schiff base to nitrate charge transfer transition, IL_1CT = Intra nitrate charge transfer, ILCT= Intra Schiff base charge transfer, L_1LCT =Nitrate to Schiff base charge transfer.

MOs	Energy (eV)	% of composition			
		Aromatic ring	Hydroxyl	Imine	0NCH ₂ -
LUMO+5	2.65	88	1	2	9
LUMO+4	2.50	5	0	3	92
LUMO+3	2.03	17	67	1	16
LUMO+2	1.36	53	1	42	4
LUMO+1	0.05	94	4	2	0
LUMO	-1.13	57	1	39	3
HOMO	-5.79	1	0	3	96
HOMO -1	-6.13	17	69	10	4
HOMO -2	-6.70	26	2	57	15
HOMO -3	-6.78	66	1	25	8
HOMO -4	-6.88	1	0	0	99
HOMO -5	-8.23	3	0	3	94

Table 8S. Selected MOs along with their energies and compositions of complex HL.

Table 9S Calculated energies of optimized geometries and other physical parameters for complexes **1**, **2** and **HL**, using B3LYP, B3PW91 and MPW1PW91 functionals. [In methanol using CPCM model, basis set LanL2DZ for 1 and 2, 6-31G (d-p) for HL].

Compounds	Parameters	Functional		
		B3LYP	B3PW91	MPW1PW91
1	Charge	0	0	0
	Spin	Doublet	Doublet	Doublet
	Energy (eV)	-40777.75	-40765.53	-40769.81
	Dipole Moment	9.0218	9.0843	9.1042
	Point Group	C1	C1	C1
2	Charge	0	0	0
	Spin	Doublet	Doublet	Doublet

	Energy (eV)	-39741.54	-39729.79	-39733.91
	Dipole Moment	8.6111	8.7055	8.6866
	Point Group	C1	C1	C1
HL	Charge	0	0	0
	Spin	Singlet	Singlet	Singlet
	Energy (eV)	-21918.23	-21910.03	-21913.13
	Dipole Moment	2.6295	2.6259	2.6458
	Point Group	C1	C1	C1

Table 10SCalculated energy of optimized geometry and other physical parameters modelcompound using B3LYP functional. [In methanol using CPCM model, basis set LanL2DZ].

Charge	0
Spin	Doublet
Energy (eV)	-34864.93
Dipole moment (D)	14.5311
Point group	C1

Fig.1S. ESI mass spectra of HL recorded in methanol.

Fig.3S. FT-IR spectrum of complex 2.

Fig.4S. ESI mass spectra of complex 2 recorded in methanol.

Fig.5S. Electronic absorption spectra of **HL** recorded in acetonitrile (blue line), methanol (pink line), ethanol (black line) and dichloromethane (red line).

Fig.6S. Electronic absorption spectra of complex **1** recorded in acetonitrile (blue line), methanol (pink line), ethanol (black line) and dichloromethane (red line).

Fig.7S. Electronic absorption spectra of complex **2** recorded in acetonitrile (blue line), methanol (pink line), ethanol (black line) and dichloromethane (red line).

Fig.8S. Fluorescence spectra of **HL** recorded in acetonitrile (black line), methanol (pink line), ethanol (blue line) and dichloromethane (red line) [$\lambda_{ex} = 254$ nm, for all solvents].

Fig.9S. Absorption (left) and fluorescence (right) spectra of complex 1.

Fig.10S. Absorption (left) and fluorescence (right) spectra of complex 2.

Fig.11S. Fluorescence spectra of complex **1** recorded in acetonitrile (blue line), methanol (pink line), ethanol (black line) and dichloromethane (red line).

Fig.12S. Fluorescence spectra of complex **2** recorded in acetonitrile (blue line), methanol (pink line), ethanol (black line) and dichloromethane (red line).

Fig.13S. Optimized structure of HL with Mulliken charge distribution (basis set, 6-31G (d-p)).

Fig.14S. Optimized structure of complex 1 with Mulliken charge distribution (basis set, LanL2DZ).

Fig.15S. Optimized structure of complex 2 with Mulliken charge distribution (basis set, LanL2DZ).

Fig. 16S. Calculated electronic absorption spectrum of **HL** [using conductor-like polarizable continuum model (CPCM) in ethanol; basis set, 6-31G(d-p)].

Fig. 17S. Calculated electronic absorption spectrum of **HL** [using conductor-like polarizable continuum model (CPCM) in acetonitrile; basis set, 6-31G(d-p)].

Fig. 18S. Calculated electronic absorption spectrum of **HL** [using conductor-like polarizable continuum model (CPCM) in dichloromethane; basis set, 6-31G(d-p)].

MOs	B3LYP	B3PW91	MPW1PW91
SOMO (α)	E = -5.9 eV, composition: L 96%, L ₁ 1%, Cu 3%	E = -5.98 eV, composition: L 96%, L ₁ 1%,Cu 3%	E = -6.16 eV, composition: L97%,L ₁ 1%,Cu 2%

Fig. 19S. Surface plot of frontier orbitals along with their energies and compositions of complex **1** using B3LYP, B3PW91 and MPW1PW91 functionals.

Fig. 20S. Surface plot of frontier orbitals along with their energies and compositions of complex **2** using B3LYP, B3PW91 and MPW1PW91 functionals.

Fig.21S. Calculated molecular orbital energy level diagram of **1**, **2** and HL using B3LYP, B3PW91 and MPW1PW91 functionals. [red, B3LYP; green B3PW91; blue, MPW1PW91].

Fig.22S. Calculated α molecular orbital energy level diagram of **1** and **2** [B3LYP functional; basis set LanL2DZ; using conductor-like polarizable continuum model (CPCM) in methanol].

Fig.23S. Calculated β molecular orbital energy level diagram of **1** and **2** [B3LYP functional; basis set LanL2DZ, using conductor-like polarizable continuum model (CPCM) in methanol].

Fig. 24S. Calculated electronic absorption spectrum of **1** [using conductor-like polarizable continuum model (CPCM) in ethanol; basis set, LanL2DZ].

Fig. 25S. Calculated electronic absorption spectrum of **1** [using conductor-like polarizable continuum model (CPCM) in acetonitrile; basis set, LanL2DZ].

Fig. 26S. Calculated electronic absorption spectrum of **1** [using conductor-like polarizable continuum model (CPCM) in dichloromethane; basis set, LanL2DZ].

Fig. 27S. Calculated electronic absorption spectrum of **2** [using conductor-like polarizable continuum model (CPCM) in ethanol; basis set, LanL2DZ].

Fig. 28S. Calculated electronic absorption spectrum of **2** [using conductor-like polarizable continuum model (CPCM) in acetonitrile; basis set, LanL2DZ].

Fig. 29S. Calculated electronic absorption spectrum of **2** [using conductor-like polarizable continuum model (CPCM) in dichloromethane; basis set, LanL2DZ].

Fig. 30S. Experimental (black line) and theoretical (red, green and blue line, using B3LYP, B3PW91, MPW1PW91 functionals, respectively) electronic spectra of complex **1**.

Fig. 31S. Experimental (black line) and theoretical (red, green and blue line, using B3LYP, B3PW91, MPW1PW91 functionals, respectively) electronic spectra of complex **2**.

Fig. 32S. Experimental (black line) and theoretical (red, green and blue line, using B3LYP, B3PW91, MPW1PW91 functionals, respectively) electronic spectra of HL.

Fig.33S. UV-Vis spectra of 3 ml 0.98μ M methanolic solution of HL upon addition of 150 μ l 25.66 μ M methanolic solution of various metal ions keeping the anion fixed (nitrate in the present case) [inset bar diagram represent the absorbance at 272 nm].

Fig.34S. UV-Vis spectra of adduct containing 3 ml 0.98 μ M methanolic solution of HL and 150 μ l 25.66 μ M methanolic solution of Cu(II) ion upon addition of 150 μ l 25.66 μ M methanolic solution of different metal ions keeping the anionic unit fixed (nitrate in the present case).

Fig. 35S. UV-vis absorption spectra of HL with $Cu(NO_3)_2$ ·3H₂O. In presence and absence of EDTA.

Fig.36S. Theoretical and experimental absorbance spectra of model compound.

Fig.37S. Left fluorescence behavior of 3 ml 0.1 mM methanolic solution of HL upon addition of 50 μ l 0.025(M) methanolic solution of various metal ions keeping the anion fixed (nitrate in the present case), right bar diagram represent the quenching efficiency of various metal ions (negative value indicate enhancement efficiency).

Fig.38S. Fluorescence of 3 ml 0.1 mM methanolic solution of HL upon gradual addition of 10 μ l 5 mM methanolic solution of Cu(II) ion keeping the anion fixed (nitrate in the present case) [Inset (a) represent decrease of fluorescence intensity upon gradual addition of Cu(II) at 359nm whereas (b) represent that at 313 nm].

Fig.39S. Benesi-Hildebrand plot with respect to the emission band at 359 nm.

Fig.40S. Surface plot of frontier orbitals along with their energies and compositions of **HL** using B3LYP, B3PW91 and MPW1PW91 functionals.

Fig.41S. Calculated molecular orbital energy level diagram of **HL** [B3LYPfunctional; basis set 6-31G(d-p), using conductor-like polarizable continuum model (CPCM) in methanol].

Fig.42S. Optimized structure of model compound

Fig.43S. Deviation from target vs. optimization step of **1** [using conductor-like polarizable continuum model (CPCM) in methanol; basis set, LanL2DZ].

Fig.44S. Deviation from target vs. optimization step of **2** [using conductor-like polarizable continuum model (CPCM) in methanol; basis set, LanL2DZ].

Fig.45S. Deviation from target vs. optimization step of HL [using conductor-like polarizable continuum model (CPCM) in methanol; basis set, 6-31G(d-p)].