Supplementary information

Synthesis of pH-responsive Amphiphilic Branched Macro-RAFT Agent and the Application in Surfactant-free Emulsion Polymerization

Yong-Fu Diao, Wei Cui, Yu-Lin Zhang, Ling-Ying Shi, and Rong Ran*

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China

*Corresponding author. Email address: ranrong@scu.edu.cn Tel: +86-28-85462890, Fax: +86-28-85462890 In Fig. 1, the FTIR spectrum of the the PMA_{80} -b-HBPtBA₈₀ obtained by RAFT polymerization of tBA in presence of PMA_{80} -TTC as a RAFT agent, peaks at 1370cm⁻¹ corresponded to tert-butyl group. After hydrolysis reaction between tert-butyl group and TFA, the band corresponded to tert-butyl group obviously disappeared and the bands at 3450 cm⁻¹ corresponded to the characteristic in carboxyl group appeared in the FTIR spectrum of the PMA₈₀-b-HBPAA₈₀. It confirmed the success of hydrolysis reaction between tert-butyl group and TFA.

Fig. 1 FT-IR spectra of PMA₈₀-TTC, PMA₈₀-b-HBPtBA₈₀ and PMA₈₀-b-HBPAA₈₀.

The ¹HNMR spectra of PMA₈₀-TTC, PMA₈₀-b-HBPtBA₈₀ and PMA₈₀-b-HBPAA₈₀ were showed in Fig. 2, 1.44 ppm corresponded to tert-butyl group and δ

(TMS): 11.93 ppm and12.86 ppm corresponded to the characteristic in carboxyl group. It further proved the success of hydrolysis reaction between tert-butyl group and TFA. Through the above analysis, it is successful to acquire information on chain structures of macro-RAFT agents of PMA₈₀-TTC, PMA₈₀-*b*-HBPtBA₈₀ and PMA₈₀-*b*-HBPAA₈₀.

Fig.2 ¹H NMR spectra of (A) PMA₈₀-TTC, (B) PMA₈₀-b-HBPtBA₈₀ and (C) PMA₈₀-b-HBPAA₈₀.

Fig.3.The particle size distribution in the emulsions prepared using (D1) PMA₈₀- b-HBPAA₄₀, (E1) PMA₈₀- b-HBPAA₈₀, (F1) PMA₈₀- b-HBPAA₁₂₀, at a fixed pH=3.0.

Fig.4.The particle size distribution in the emulsions prepared using (D2) PMA₈₀- b-HBPAA₄₀, (E2) PMA₈₀- b-HBPAA₈₀, (F2) PMA₈₀- b-HBPAA₁₂₀, at a fixed pH=12.0.

рН	branched copolymers	Uniformity
3.0	PMA ₈₀ - b-HBPAA ₄₀	0.443
	PMA ₈₀ - b-HBPAA ₈₀	0.503
	PMA ₈₀ - b-HBPAA ₁₂₀	0.559
12.0	PMA ₈₀ - b-HBPAA ₄₀	0.372
	PMA ₈₀ - b-HBPAA ₈₀	0.439
	PMA ₈₀ - b-HBPAA ₁₂₀	0.431

Table 1 ^a Uniformity of particles for toluene/water emulsions prepared using different branched copolymers.

a. Uniformity of particles was directly measured by Malvern laser particle size analyzer.

Fig.5. Evolution of monomer conversion versus time for the RAFT emulsion polymerizations of St mediated by PMA₈₀-*b*-HBPAA₁₂₀ at different pH with [St]/[PMA₈₀-*b*-HBPAA₁₂₀]/[ACPA]= 5400/7/2, [ACPA]/[NaHCO₃]=1/3.5, [St]=16.7wt%.

Fig.6 Evolution of monomer conversion versus time for the RAFT emulsion polymerizations of St mediated by PMA_{80} -b-HBPAA_y with pH=5.5, [St]/[PMA_{80}-b-HBPAA_y]/[ACPA]= 5400/7/2, [ACPA]/[NaHCO₃]=1/3.5, [St]=16.7wt%.