Controllable Synthesis of Conjugated Thiophenylethyne-based Compounds with Different Chain Lengths

Wei Huang, Haoyun Zhu, Yuli Huang, Junwei Yang and Weizhi Wang*

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China. E-mail: weizhiwang@fudan.edu.cn; Tel: +86 021-65643836

Supporting Information

Table of Content

- 1. Summary of crystal data and reflective collection parameters for 2. (Table S1)
- ¹H NMR and ¹³C NMR spectra of the synthesized products. (Fig. S1 Fig. S9)
- 3. The MALDI-TOF of 1-4. (Fig. S10 Fig. S13)
- 4. The GPC data of PTE. (Fig. S14)
- 5. The fluorescence lifetime of 1-4 and PTE in CH₂Cl₂ solutions. (Fig. S15)
- 6. The CV curves of 1-4 and PTE in CH₂Cl₂ solution. (Fig. S16)
- The 2D-GIXRD patterns of 1, 2 and 4. The inserted models are schematic diagram of the orientations of the aggregation structure with respect to the substrate in the films. (Fig. S17 – Fig. S19)
- 8. The detailed calculated procedures for the charge carrier mobility.
- 9. The charge carrier mobility plots versus gate voltages for 3, 4 and PTE. (Fig. S20)

 Table S1 Summary of crystal data and reflective collection parameters for 2.

	$\langle \mathbf{s} \rangle = \langle \mathbf{s} \rangle = \langle \mathbf{s} \rangle$
Empirical formula	C ₁₆ H ₈ S ₃
Formula weight	296.40
Crystal size, mm	0.26 x 0.21 x 0.17
Crystal system	Monoclinic, C2/c
space group a, Å b, Å c, Å a, deg	P2(1)/c $15.042(5)$ $11.404(4)$ $c = 32.856(10)$ 90 $95.004(5)$
β , deg	95.094(5)
γ , deg	90
V, Å ³	5614(3)
Z	16
Calculated density, Mg/m ³	1.403
F(000)	2432
Temperature, K	296(2)
Wavelength, Å	0.71073
μ (Mo Ka), mm ⁻¹	0.509
$2\theta_{max}$, deg (Completeness)	25.00 (98.5 %)
no. of collected reflections	13829
no. of unique ref.(R_{int})	4882 (0.0618)
Data/restraints/parameters	4882 / 7 / 352
R ₁ , wR ₂ [obs I>2 σ (I)]	0.0881, 0.1980
R ₁ , wR ₂ (all data)	0.1181, 0.2094
residual peak/hole, e. Å ⁻³	0.634 / -0.752
transmission ratio Goodness-of-fit on F^2	0.9185/ 0.8791 1.067

Fig. S2 The ¹³C NMR spectrum of 1.

Fig. S9 The ¹H NMR spectrum of PTE

Fig. S10 The MALDI-TOF of 1.

Fig. S11 The MALDI-TOF of 2.

Fig. S12 The MALDI-TOF of 3.

Fig. S14 The GPC data of PTE.

Fig. S15 The fluorescence lifetime of 1-4 and PTE in CH₂Cl₂ solutions.

Fig. S16 The CV curves of (a) 1, (b) 2, (c) 3, (d) 4 and (e) PTE in CH_2Cl_2 solution.

Fig. S17 The 2D-GIXRD patterns of 1. The inserted model is a schematic diagram of the orientations of the aggregation structure with respect to the substrate in the films.

Fig. S18 The 2D-GIXRD patterns of 2. The inserted model is a schematic diagram of the orientations of the aggregation structure with respect to the substrate in the films.

Fig. S19 The 2D-GIXRD patterns of 4. The inserted model is a schematic diagram of the orientations of the aggregation structure with respect to the substrate in the films.

The detailed calculated procedures for the charge carrier mobility.

According to the obtained V_{th} values and the metal-oxide semiconductor FET formula for the saturation regime, $I_{DS} = \frac{\mu W C_i}{2L} (V_G - V_{th})^2$, the calculations of the charge carrier mobility (μ) are below:

3

```
\begin{split} I_{DS} &= 30.79 \times 10^{-6} \ A, \ V_G = -6.69 \ V, \ V_{DS} = 1V, \ C_i = 20 \ \mu F/cm^2, \ W = 1 \ mm, \ L = 1 \ mm, \ V_{th} = -1.81 \ V \\ \mu &= 2LI_{DS} / \left[ WC_i (V_G - V_{th})^2 \right] = 2I_{DS} / \left[ C_i (V_G - V_{th})^2 \right] \\ &= 2 \times 30.79 \times 10^{-7} / \left[ 20 \times 10^{-6} \times (-6.69 + 1.81)^2 \right] \\ &= 0.13 \ cm^2 V^{-1} s^{-1} \\ \mathbf{4} \\ I_{DS} &= 35.93 \times 10^{-6} \ A, \ V_G = -6.23 \ V, \ V_{DS} = 1V, \ C_i = 20 \ \mu F/cm^2, \ W = 1 \ mm, \ L = 1 \ mm, \ V_{th} = -2.14 \ V \end{split}
```

```
\mu = 2LI_{DS} / [WC_i (V_G - V_{th})^2] = 2I_{DS} / [C_i (V_G - V_{th})^2]
```

```
= 2 \times 30.79 \times 10^{-7} / [20 \times 10^{-6} \times (-6.69 + 1.81)^2]
```

```
= 0.22 \ cm^2 V^{-1} s^{-1}
```

РТЕ

 $I_{DS} = 39.27 \times 10^{-6} A$, $V_G = -5.27 V$, $V_{DS} = 1V$, $C_i = 20 \ \mu F/cm^2$, W = 1 mm, L = 1 mm, $V_{th} = -2.22 V$

 $\mu = 2LI_{DS} / [WC_i (V_G - V_{th})^2] = 2I_{DS} / [C_i (V_G - V_{th})^2]$

$$= 2 \times 30.79 \times 10^{-7} / [20 \times 10^{-6} \times (-6.69 + 1.81)^{2}]$$

$$= 0.42 \ cm^2 V^{-1} s^{-1}$$

Fig. S20 The mobility plots versus gate voltages for (a) 3, (b) 4 and (c) PTE.