Electronic Supplementary Information for:

A large-volume manufacturing of multi-crystalline silicon solar cells with 18.8% efficiency incorporating practical advanced technologies

Yingbin Zhang^{a,b}, Jiahua Tao^a, Yifeng Chen^b, Zheng Xiong^b, Ming Zhong^b, Zhiqiang Feng^b, Pingxiong Yang^{a*}and Junhao Chu^a

^aKey Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China

^bState Key Laboratory of PV Science and Technology, Changzhou Trina Solar Energy Co. Ltd,.No. 2 Tianhe Road, Trina PV Park, XinBei District, Changzhou, Jiangsu 213031, P.R. China

*Corresponding author. Tel: +86 21 54345157; fax: +86 21 54345119. E-mail address: pxyang@ee.ecnu.edu.cn (P. Yang)

Figure S1. Simulated cell efficiency and V_{oc} as a function of bulk lifetime for conventional solar

cells with Al-BSF.

^{*} Corresponding author. Tel: +86 2154345157; fax: +86 2154345119. E-mail: pxyang@ee.ecnu.edu.cn (P. Yang)

Figure S2. Simulated cell efficiency for conventional mc-Si solar cells as a function of J_{sc} .

Figure S3. Different cell fabrication processes (a) standard cells,(b) cells with SE structure and (c)

cells with RIE texture.

Figure S4. PL mapping of the mc-Si wafers at different positions of the ingots from (a) conventional

and (b) grain-size controlled growth.

V_{oc}:627.8mV; J_{sc}:35.18mA/cm²;FF:78.93%; Eff:17.43%

Figure S5. PL and EL images of mc-Si wafer and cell: (a) represents the PL image of a standard wafer,

(b) is the EL image of the same wafer after cell processing, (c) represents the PL image of a wafer

fabricated with the grain-size controlled growth and (d) is the EL image of the same wafer after solar

cell fabrication.

Figure S6. Phosphorus dopant concentration as a function of depth for as doped (blue) and after etch

back (red) by ECV with non-textured monocrystalline wafer.

Table S1. The average electrical performance of solar cells with different wafer types.

	6	1					51		
Wafer source S	Samular	$J_{sc}(\text{mA/cm}^2)$		V_{oc} (mv)		<i>FF</i> (%)		<i>Eff.</i> (%)	
	Samples	Average	STDEV	Average	STDEV	Average	STDEV	Average	STDEV
Standard mc-Si	465	34.96	0.0792	621.9	0.00404	78.37	0.326	17.05	0.331
Grain-size	470	35.18	0.056	627.8	0.00249	78 83	0.317	17.43	0 182
controlled mc-Si	470	35.18	0.050	027.8	0.00249	78.85	0.517	17.45	0.162

Table S2. Cell electrical parameters vs. initial sheet resistance.

Initial sheet	Samples	$J_{sc}(mA/cm^2)$		V_{oc} (mv)		<i>FF</i> (%)		<i>Eff.</i> (%)	
resistance(Ω/\Box)		Average	STDEV	Average	STDEV	Average	STDEV	Average	STDEV
40	893	35.84	0.035	630	0.0023	78.31	0.248	17.69	0.144
50	974	36	0.034	631.3	0.0022	78.33	0.237	17.83	0.138
60	890	35.88	0.044	631.1	0.0027	78.34	0.297	17.74	0.178

Table S3. Cell parameters vs. post-etchback sheet resistance.

Post-etchback sheet	Samples	$J_{sc}(\mathrm{mA/cm^2})$		V_{oc} (mv)		<i>FF</i> (%)		<i>Eff.</i> (%)	
resistance(Ω/\Box)		Average	STDEV	Average	STDEV	Average	STDEV	Average	STDEV
90	472	35.95	0.0318	630.1	0.0019	78.76	0.207	17.85	0.119
110	458	35.97	0.0323	631.5	0.0023	78.49	0.345	17.83	0.139
130	478	36.01	0.0334	631.7	0.0023	78.36	0.367	17.825	0.135

Table S4. Comparison of cell performance between homogeneous and selective emitter.

Emitter Type		$J_{sc}(\text{mA/cm}^2)$		V_{oc} (mv)		<i>FF</i> (%)		<i>Eff.</i> (%)	
	Samples	Avorago	STDEV	Average	STDEV	Average	STDE	Averag	STDE
		Average					V	e	V
Homogeneous emitter	482	35.18	0.056	627.8	0.00249	78.83	0.317	17.43	0.182
Selective emitter	473	35.79	0.0469	631.1	0.00237	78.92	0.3271	17.78	0.1639

Table S5. Efficiency of RIE without DRC vs. acid texturing.

Texturing conditions		$J_{sc}(\text{mA/cm}^2)$		V_{oc} (mv)		FF(%)		<i>Eff.</i> (%)	
	Samples	A	STDEV	Average	STDEV	Averag	STDE	Averag	STDE
		Average			SIDEV	e	V	e	V
Standard Acid	402	24.50	0.0822	610.2	0.00412	79 6	0.246	16.67	0.2405
Texturing	493	34.52	0.0852	019.3	0.00415	/8.0	0.340	10.07	0.3403
RIE without DRC	485	34.95	0.0853	617.3	0.00421	79.1	0.302	16.89	0.3323

 Table S6. The impact of different reflectances on cell parameter.

Texturing conditions	Sampla	$J_{sc}(\mathrm{mA/cm^2})$		V_{oc} (mv)		<i>FF</i> (%)		<i>Eff.</i> (%)	
	Sample	Averag STDE Averag	CTDEV	Averag	STDE	Averag	GTDEV		
	8	e	V	e	SIDEV	e	V	e	SIDEV
Standard Acid	100	24.25	0.0002	615.2	0.0041	78.2	0.216	16.47	0.324
Texturing	199	54.25	0.0882	015.2		70.2	0.510		
Reflectance 9% with	220	25 17	0.0724	614.9	0.0028	77.0	0.282	16.95	0.278
RIE	220	55.17	0.0734	014.8	0.0038	11.9	0.282	10.85	0.278
Reflectance 6% with	216	25.26	0.0846	615.4	0.0038	78.0	0.269	16.92	0.288
RIE		55.20							
Reflectance 4% with	222	22 25 24	0.0025	(15.0	0.004	70.1	0.2	16.02	0.22
RIE	222	33.34	0.0935	015.9	0.004	/8.1	0.3	10.93	0.32

Table S7. The impact of DRC time.

		J_{sc} (mA/cm ²)		V_{oc} (mv)		<i>FF</i> (%)		<i>Eff.</i> (%)		
Texturing conditions	Samples	Averag	STDE	Averag	STDEV	Averag	STDE	Averag	STDEV	
		e	V	e	SIDEV	e	V	e	SIDEV	
Standard Acid	175	24.11	0.1002	6171	0.005	70.2	0.519	16 49	0.260	
Texturing	175	34.11	0.1092	017.1	0.003	/8.5	0.318	10.48	0.309	
Reflectance 11%	150	35.22	0.1034	617.5	0.0047	79.6	0.42	17.09	0.376	
after DRC 20sec	159				0.0047	70.0				
Reflectance 15%	148	35 21	0.1086	617.8	0.0044	78.6	0.574	17.1	0.372	
after DRC 35sec	140	55.21								
Reflectance 18%	158	35.15	0.0068	618.0	0.0049	78.6	0.414	17.11	0.247	
after DRC 50sec	158	55.15	0.0908	018.9		78.0	0.414		0.547	
Reflectance 19.3%	160		25.01	0.1165	(10.0	0.0051	5 0 2	0.50	16.06	0.411
after DRC 70sec		35.01	0.1165	618.2	0.0051	/8.3	0.58	16.96	0.411	

Table S8. Cell parameters with integration of multiple technologies.

		$J_{sc}(\mathrm{mA/cm^2})$		V_{oc} (mv)		<i>FF</i> (%)		<i>Eff.</i> (%)	
Process conditions	Samples	Averag	STDE	Averag	STDEV	Averag	STDE	Averag	STDEV
		e	V	e		e	V	e	
Standard solar cells	9951	35.01	0.0821	621.5	0.00394	78.6	0.321	17.07	0.3111
Multiple	0704	26.22	0.0512	638.7	0.0024	80.37	0.2532	18.65	0.1435
technologies	9794	36.32							
Multiple	Manian	26.67	-	639.5	-	00.21	-	18.84	
technologies	Maxium	36.67				80.31			-