Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

A Hybrid Macrocyclic Anion Receptor

Exploiting the Pyrrole-2,5-diacetamide Unit

Janusz Jurczak,* Pawel Dydio, Pawel Stepniak, Tomasz Zielinski

Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

jurczak_group@icho.edu.pl

Supporting Information

Synthesis

Pyrrole-2,5-diacetic acid (9)

Pyrrole-2,5-diacetic acid methyl ester (3.4 g, 16 mmol) was dissolved in ethanol (8 ml) and KOH (7 g) in water (8 ml) was added. The mixture was refluxed for 1 h. Then additional water (10 ml) was added and pH was adjusted to 1 with HCl. Product was extracted with chloroform (3x50 ml) and diethyl ether (3x50 ml), combined organic layers were dried with MgSO₄ and evaporated. Crude product was crystalized from pentane/diethyl ether mixture, yielding 2.3 g (13 mmol, 80%) of **8**.

mp. 120-122°C.

¹**H** NMR (200 MHz, DMSO) δ = 12.22 (bs, 2H), 10.47 (bs, 1H), 5.72 (d, 2H, J_1 = 2.4 Hz), 3.44 (s, 4H, C H_2).

¹³**C NMR** (50 MHz, DMSO) δ = 172.5, 124.0, 107.0, 33.9.

Pyrrole-2,5-diacetic butyl diamide (8a)

Pyrrole-2,5-diacetic methyl diester (0.7 g, 3 mmol) was dissolved in butylamine (4 ml) under Ar. Sealed flask was heated to 60 deg C and the reaction mixture was stirred overnight. 1 M HCl (20 ml) was then added, and product was extracted with CHCl₃ (4x15 ml). Combined organic layers were dried with MgSO₄, solvent was evaporated and the residue was purified with gel chromatography using CH₂Cl₂:MeOH 100:3. Yield 0.75 g (2.6 mmol, 87%). Product **8a** was recrystallized in ethyl acetate:hexanes 4:6.

mp. 165-167°C.

¹**H NMR** (200 MHz, DMSO) $\delta = 9.63$ (s, 1H), 6.02 (t, 2H, $J_1 = 5.4$ Hz), 5.94 (d, 2H, $J_1 = 2.4$ Hz), 3.19 (s, 4H), 3.19 (dt, 4H, $J_1 = 7.0$ Hz, $J_2 = 6.8$ Hz), 1.41 (m, 4H), 1.29 (m, 4H), 0.88 (t, 6H, $J_1 = 7.2$ Hz).

¹³C NMR (50 MHz, DMSO) δ = 170.47, 125.09, 107.88, 39.39, 35.84, 31.44, 19.96, 13.68. HRMS (ESI TOF) calcd for C₁₆H₂₇N₃O₂Na [M+Na]+: 316,1995 found: 316,2001. **Elemental Analysis** calcd for C₁₆H₂₇N₃O₂: C 65.53, H 9.22, N 14.33, found: C 65.54, H 9.11, N 14.35.

Pyrrole-2,5-diacetic phenyl diamide (8b)

Diacid 8 (1 g, 5.8 mmol) was stirred with aniline (2.1 ml, 23 mmol) in dry THF (25 ml) under Ar. Diisopropylcarbodiimide (2 ml, 12.8 mmol) was dropped into the reaction mixture, and was stirred overnight. Solvent was then evaporated, residue was suspended in CHCl₃ (100 ml) and sonicated. The resulting precipitate was dissolved in CH₂Cl₂:MeOH 1:1, 1M HCl was added, and layers were separated. Solid precipitated from the organic layer, which was then filtered of and recrystallized from ethanol, yielding with 1 g (3 mmol, 51%) of **4b** as a colorless needles.

mp. 186-192°C.

¹**H** NMR (200 MHz, DMSO) δ = 10.52 (s, 1H), 10.00 (s, 2H), 7.60 (d, 4H, J_1 = 8.6 Hz), 7.30 (dd, 4H, J_1 = 8.4 Hz J_2 = 8.4 Hz), 7.03 (t, 2H), 5.79 (s, 2H), 3.56 (s, 4H).

¹³**C NMR** (50 MHz, DMSO) δ = 169.01, 139.75, 129.18, 125.03, 123.60, 119.51, 106.84, 36.64.

HRMS (ESI TOF) calcd for C₂₀H₁₉N₃O₂Na [M+Na]+: 356,1369 found: 356,1381.

Elemental Analysis calcd for $C_{20}H_{19}N_3O_2$: C 72.07, H 5.70, N 12.61, found: C 71.84, H 5.60, N 12.65.

Pyrrole-2,5-diacetic 2-aminoethyl diamide (6)

Pyrrole-2,5-diacetic methyl diester (1 g, 4.7 mmol) was dissolved in ethylenediamine (6 ml) under Ar. Sealed flask was heated to 60°C and the reaction mixture was stirred overnight. Ethylenediamine was evaporated under reduced pressure, the residue was washed with CH_2Cl_2 and purified using gel chromatography in gradient of MeOH:NH₃·H₂O 100:3 (200ml), 100:5 (400ml), 100:10 (200ml). Yield 0.8 g (3.1 mmol, 66%).

¹**H NMR** (200 MHz DMSO) δ = 10.38 (bs, 1H), 7.79 (t, 2H, *J*₁ = 6.2 Hz), 5.66 (d, 2H, *J*₁ = 2.2 Hz), 3.3 (s, 4H), 3.02 (dt, 4H, *J*₁ = 6.2 Hz, *J*₂ = 6.0 Hz), 2.52 (t, 4H, *J*₁ = 6.0 Hz), 2.27 (bs, 4H).

¹³C NMR (125 MHz, DMSO) δ =170.2, 125.3, 106.5, 42.8, 41.7, 35.6.

HRMS (ESI TOF) calcd for C₁₂H₂₁N₅O₂ M⁺: 267.16953, found: 267.16852.

Macrocycle 4

Amine **6** (0.8 g, 3 mmol) and dipicolic acid methyl diester **7** (0.6 g, 3 mmol) were dissolved in methanol (50 ml). DBU (0.3 ml) was added and the mixture was left for 14 days. Next, oligomeric side products were filtered off and the filtrate was purified by gel chromatography, using isocratic 3-5% gradient of MeOH:CH₂Cl₂, yielding 180 mg of macrocycle **1** (0.45mmol, 15%).

mp. 282°C (decomposition).

¹**H NMR** (200 MHz, DMSO) δ = 10.03 (bs, 1H), 9.04 (t, 2H, *J*_{*I*} = 4.6 Hz), 8.20 (m, 3H), 7.27 (bs, 2H, *J*_{*I*} = 5.0 Hz), 5.65 (d, 2H, *J*_{*I*} = 2.6 Hz), 3.36 (m, 12H).

¹³C NMR (50 MHz, DMSO) δ = 170.8, 163.9, 149.1, 139.9, 124.9, 124.6, 107.3, 41.2, 35.8. HRMS (ESI TOF) calcd for C₁₉H₂₂N₆O₄Na [M+Na]⁺: 421.1600, found: 421.1592.

Elemental Analysis calcd for C₁₉H₂₂N₆O₄: C 57.28, H 5.57, N 21.09, found: C 57.01, H 5.63, N 21.22.

Crystalographic data: Monocrystal was obtained by slow evaporation of THF from the solution of the receptor. $C_{20}H_{19}N_3O_2$, M = 333.38, monoclinic, *Cc*, *a* = 11.6197(3) Å, *b* = 9.4493(4) Å, *c* = 30.4715(10) Å, *a* = 90°, *β* = 92.932(2)°, *γ* = 90°, *V* = 3341.3(2) Å³, *T*=100(2) K, Z = 8, μ (Mo-K_a) = 0.088 mm⁻¹, 17472 collected reflexes, 3471 unique (R_{int} = 0.0421). Final R indices [I>2 σ (I)]: $RI(F^2)$ = 0.0549 i $wR2(F^2)$ = 0.1479, R indices (all data): $RI(F^2)$ = 0.0576 i $wR2(F^2)$ = 0.1512. All heavy atoms were refined anisotropically. All hydrogen atoms were located geometrically.

Figure S1. ¹H NMR spectrum of diacid 9.

Figure S2. ¹³C NMR spectrum of diacid **9**.

Figure S3. ¹H NMR spectra of diamide **8a**.

Figure S4. ¹³C NMR spectrum of diamide **8a**.

Figure S5. ¹H NMR spectra of diamide **8b**.

Figure S6. ¹³C NMR spectrum of diamide **8b**.

Figure S7. ¹H NMR spectrum of diamine **6**.

Figure S8. ¹³C NMR spectrum of diamine **6**.

Figure S9. ¹H NMR spectra of macrocycle **4**.

Figure S10. ¹³C NMR spectrum of macrocycle **4**.