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1. Characterizations of all compounds
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Figure S1. 1H NMR spectrum of 2 in CDCl3 at ambient temperature.

Figure S2. 13C NMR spectrum of 2 in CDCl3 at ambient temperature.
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Figure S3. MS-ESI spectrum of 2 in CDCl3 at ambient temperature.
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Figure S4. FT-IR spectrum of 3 in KBr tablet at ambient temperature.
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Figure S5. 1H NMR spectrum of 3 in CDCl3 at ambient temperature.

Figure S6. 13C NMR spectrum of 3 in CDCl3 at ambient temperature.
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Fi

gure S7. MS-ESI spectrum of 3 in CDCl3 at ambient temperature.
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Figure S8. FT-IR spectrum of 3 in KBr tablet at ambient temperature.
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Figure S9. 1H NMR spectrum of 4 in CDCl3 at ambient temperature.
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Figure S10. 13C NMR spectrum of 4 in CDCl3 at ambient temperature.
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Figure S11. MS-ESI spectrum of 4 in CDCl3 at ambient temperature.
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Figure S12. FT-IR spectrum of 4 in KBr tablet at ambient temperature.
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Figure S13. 1H NMR spectrum of 1 in CDCl3 at ambient temperature.
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Figure S14. 13C NMR spectrum of 1 in CDCl3 at ambient temperature.
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Figure S15. MS-ESI spectrum of 1 in CDCl3 at ambient temperature.

Figure S16. HR-Ms result of 1 at ambient temperature.
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Figure S17. FT-IR spectrum of 1 in KBr tablet at ambient temperature.
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2. Supporting information for the mechanism study

Figure S18. Different phenomenon of β-CD in aqueous solution (0.1 mM), β-CD/1 vesicular 

solution (0.1 mM) and 1 aqueous dispersion in water (0.1 mM) illuminated by a laser pointer.

Figure S19. Cryo-TEM images of β-CD/1 vesicular sample in water.
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Figure S20. The molecular status after MM2 energy minimize calculation and corresponding 

calculated molecular sizes.1

Figure S21. TEM micromorphology images of only β-CD in water after a 20 min sonication. 

Phosphotungstic acid was employed as the negative staining agent.
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Figure S22. TEM micromorphology images of only compound 1 in water after a 20 min 

sonication. Phosphotungstic acid was employed as the negative staining agent.

Figure S23. 1H NMR spectra of β-CD and β-CD/1 in D2O at ambient temperature.
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Figure S24. UV/vis spectra of 1/β-CD (G/H = 10:0, 9:1, 8:2, 7:3, 6:4, 5:, 4:6, 3:7, 2:8, 1:9, 0:10, 

shown from top to down) for Job’s plots in water at room temperature.

Figure S25. Double reciprocal plots of 1/β-CD inclusion complex in water at 282 nm: (A) UV 

absorbance of 1 in presence of β-CD with different concentrations; (B) the complex constant 

calculated in 1:2 mode (G/H, r2 = 0.90).
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3. Photo- and redox-responsive properties

Figure S26. TEM micromorphology images of β-CD/1 vesicular sample in water upon recovery 

with visible light irradiation. Phosphotungstic acid was employed as the negative staining agent.

Figure S27. 1H NMR spectra (400 MHz in CD3OD/CDCl3 (2/1, v/v) at 298 K, the entire version) 
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from the same tube of 1 before (A), after (B) UV irradiation (365 nm, 60 mW·cm-2, 30 min) and 

(C) visible light radiation (434 nm, 20 mW·cm-2, 5 h).

Figure S28. TEM micromorphology images of only β-CD/1 sample in water upon DTT treatment. 

Phosphotungstic acid was employed as the negative staining agent.
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Figure S29. DLS results of the β-CD in PBS 7.40 (black, average size: 0.8 nm) and β-CD/3 (red, 

average size: 1.8 nm) in water at 300 K.
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4. Drug loading and release

1000 2000 3000 4000
0

30

60

3267
3314

3450

MMC

vesicles carrying MMC

 

 

Tr
an

sm
itt

an
ce

/%

Wavelength/nm
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Figure S30. FT-IR spectra comparison of β-CD/1 dried vesicles, and dried vesicles 

carrying mitomycin C (MMC) in KBr capsules at 300 K.

Figure S31. Representative HPLC chromatogram of MMC and riboflavin (internal 

standard)
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Figure S32. The standard curve of MMC concentration with riboflavin as the internal 

standard determined by HPLC. R2=0.99393 and the values are represented as a mean 

± SD (n = 3). 

Figure S33. A: TEM micromorphology images (A) and DLS result (B) of pyrene-loaded β-CD/1/ 

vesicles in water. Phosphotungstic acid was employed as the negative staining agent.
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 dried vesicles carrying with pyrene
 dried vesicles

Figure S34. FT-IR spectra comparison of β-CD/1 dried vesicles, and dried vesicles 

carrying pyrene in KBr capsules at 300 K.

Pyrene, with poor aqueous solubility (~10-6 mol/L) and high stability, can play the 

role as the hydrophobic drug model for the drug-carrying qualification.2 We found 

that upon the drug loading, the β-CD/1 vesicles’ diameter tend to increase from TEM 

and DLS observations (417 nm, Figure S31). This may be due to the insertion of 

hydrophobic models into the bilayers.3 The characteristic vc=c peak (1702 cm-1) of 

pyrene in the FTIR spectrum demonstrates the successful carrying of pyrene to the 

vesicular system (Figure S32). 
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