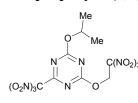
Electronic Supplementary Information

Novel Trinitroethanol Derivatives: High Energetic 2-(2,2,2-Trinitroethoxy)-1,3,5-triazines

Alexander A. Gidaspov,^a Vladimir A. Zalomlenkov,^a Vladimir V. Bakharev,^a Victor E. Parfenov,^a Evgeniy V. Yurtaev,^a Marina I. Struchkova,^b Nadezhda V. Palysaeva,^b Kyrill Yu. Suponitsky,^c David B. Lempert,^d and Aleksei B. Sheremetev ^{b*}

^a Samara State Thechnical University, Samara, 443100, Russian Federation
^bN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation, Fax: +7 499 135 5328; e-mail: <u>sab@ioc.ac.ru</u>
^bA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russian Federation, Fax: +7 499 135 5085; e-mail: <u>kirshik@yahoo.com</u>
^d Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432 Russian Federation.

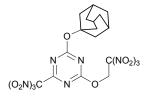
Contents	Page
General Information	S 1
Synthesis	S2
Geometry characteristics of molecules of compounds 16, 21, and 20	S4
Description of intermolecular interactions for compounds 16, 21, and 20	S5
Aliphatic trinitroethoxy compounds	S13
Description of intermolecular interactions for cyanuric acid	S16
Crystallographic data of low-temperature and room-temperature experiments	
for compounds 16 , 21 , and 20	S18
NMR Spectra	S20


Experimental Section

Caution! All prepared compounds are highly energetic materials and sensitive to various stimuli. Although none of the compounds described herein has exploded or detonated in the course of this research, safety precautions, such as face shields, a leather apron, gloves, and hearing protection should be employed. These compounds should only be prepared by an experienced synthetic chemist and should be handled with great care.

General: All the reagents were of analytical grade, purchased from commercial sources, and used as received. Infrared spectra were determined in KBr pellets on a Perkin–Elmer Model 577

spectrometer. Mass-spectra were recorded on a Varian MAT-311 A instrument. The ¹H, ¹³C, ¹⁵N, and ¹⁴N NMR spectra were recorded on a Bruker AM-300 instrument at 300.13, 75.47, 50.7, and 21.68 MHz, respectively. The chemical shift values (δ) are expressed relative to the chemical shift of the [D]solvent or to external standard (nitromethane for ¹⁴N and ¹⁵N NMR) without correction. Analytical TLC was performed using commercially pre-coated silica gel plates (Silufol UV₂₅₄), and visualization was effected with short-wavelength UV-light. Melting points were determined on Gallenkamp melting point apparatus and they are uncorrected. The decomposition points were recorded on a thermogravimetric analyzer (TGA) at a scan rate of 5°C min⁻¹ or 10°C min⁻¹. Elemental analyses were obtained by using a CHNS/O Analyzer 2400 (Perkin–Elmer instruments Series II).


2-Isopropoxy-4-(2,2,2-trinitroethoxy)-6-(trinitromethyl)-1,3,5-triazine (15a). A mixture

consisting trinitroethanol (7.24 g, 40 mmol), 2-isopropoxy-4,6bis(trinitromethyl)-1,3,5-triazine **14a** (4.37 g, 10 mmol), potassium trinitromethanide (1.89 g, 10 mmol), and absolute acetone (25 mL) was stirred at room temperature for *ca*. 44 h (TLC monitoring). The mixture was filtered and then concentrated (50%) in *vacuo*. The filtrate was

diluted by water (70 mL) to give a suspension that was neutralized to pH 7 with NaHCO₃. The precipitate was filtered off, washed with water (4×20 mL), and dried to give a bright yellow solid **15a**. Recrystallization from isopropanol gave a colorless solid (2.48 g, 50 %), mp 104-105°C. ¹H NMR (CDCl₃): $\delta = 1.47$ (d, 6H, Me, J = 6 Hz), 5.37 (s, 1H, OCH), 5.73 ppm (s, 2H, CH₂); ¹³C NMR (CDCl₃): $\delta = 21.3$ (Me), 64.5 (OCH₂), 76.9 (OCH), 122.1 (bs, C(NO₂)₃), 164.7 (N=<u>C</u>-C(NO₂)₃), 170.7 (N=<u>C</u>-OCHMe₂), 171.4 ppm (N=<u>C</u>-OCH₂); ¹⁴N NMR (aceton-d₆): $\delta = -36.7$, -39.2 ppm. IR: v = 2995, 2939, 2924, 2881, 1635, 1595, 1524, 1506, 1444, 1423, 1379, 1327, 1304, 1254, 1173, 1128, 1095, 989, 910, 894, 843, 824, 800, 783, 748, 658, 604, 571 cm⁻¹; elemental analysis calcd (%) for C₉H₉N₉O₁₄ (467.22): C 23.44, H 1.94, N 26.98; found: C 23.11, H 2.03, N 27.04.

2-(Adamantan-1-oxy)-4-(2,2,2-trinitroethoxy)-6-(trinitromethyl)- 1,3,5-triazine (15b). A

mixture of trinitroethanol (7.24 g, 40 mmol), 2-(adamantan-1-oxy)-4,6bis(trinitromethyl)-1,3,5-triazine **14b** (5.29 g, 10 mmol), and potassium trinitromethanide (1.89 g, 10 mmol) in absolute acetone (25 mL) was stirred at room temperature for *ca*. 48 h (TLC monitoring). The mixture was worked up as described above, giving 3.35 g (60%) product **15b**, mp

149-150°C (dec.). ¹H NMR (CDCl₃): $\delta = 1.72$ (s, 6H, Ad), 2.24 (s, 6H, Ad), 2.31 (s, 3H, Ad), 5.72 ppm (s, 2H, CH₂); ¹³C NMR (CDCl₃): $\delta = 31.3$ (Ad), 35.8 (Ad), 41.0 (Ad), 64.5 (OCH₂), 90.2 (Ad), 122.3 (bs, C(NO₂)₃), 164.2 (N=C-C(NO₂)₃), 170.5 (N=C-OAd), 171.2 ppm (N=C-OCH₂); IR: $\nu = 3023$, 2925, 2854, 1581, 1515, 1442, 1411, 1369, 1330, 1297, 1240, 1126, 1083, 1039, 960, 865, 829, 815, 796 cm⁻¹; elemental analysis calcd (%) for C₁₆H₁₇N₉O₁₄ (559.37): C 34.36, H 3.06, N 22.54; found: C 34.39, H 3.11, N 22.59.

General synthesis of 2-amino-substituted 4,6-*bis*(2,2,2-trinitroethoxy)-1,3,5-triazines (22a-c).

An amine (3 mmol) was added dropwise to a solution of compound **16** (0.618 g, 1 mmol) in DCE (3 mL) at 10-15° C for *ca*. 1 h. The mixture was stirred at room temperature until the completion (TLC monitoring; *iso*-propylamine – 72 h, pyrrolidine – 24 h, morpholine – 24 h).

The reaction mixture was filtered and the filtrate was evaporated in *vacuo* to dryness. The residue was stirred with cold water (2x40 mL) for 40 min and then with hot water (2x40 mL) for 40 min. The solid was filtered off and dried in air.

2-iso-Propylamino-4,6-bis(2,2,2-trinitroethoxy)-1,3,5-triazine (22a). The yield is 43%, mp

 $(O_2N)_3C$ O Me N N C(NO₂)₃ Me N N O

126-127°C (dec.). ¹H NMR (DMSO-d6) δ = 1.14-1.18 (m, 6H CH₃), 4.10-4.118 (m, 1H, CH), 6.10-6.18 (m, 4H, OCH₂), 8.53-8.59 ppm (m, 1H, NH). ¹³C NMR (DMSO-d6) δ = 21.9, (CH₃), 42.6 (N<u>C</u>H(CH₃)₂), 63.31 (OCH₂), 124.2 (C(NO₂)₃), 165.96 (C-N), 169.34, 169.93 ppm (<u>C</u>-OCH₂C(NO₂)₃). ¹⁴N NMR (DMSO-d6) δ = -36,34 ppm. IR: v = 3423,

3275, 3198, 3155, 2980, 2941, 2893, 1597, 1549, 1468, 1450, 1431, 1412, 1371, 1335, 1298, 1244, 1178, 1146, 1132, 1090, 982, 881, 856, 804, 783, 723, 644, 548 cm⁻¹; elemental analysis calcd (%) for $C_{10}H_{12}N_{10}O_{14}$ (497.27): C 24.20; H 2.44; N 28.22; found: C 24.25; H 2.38; N 28.26.

2-Pyrrolidino-4,6-*bis*(**2,2,2-trinitroethoxy**)-**1,3,5-triazine** (**22b**). The yield is 65%, mp 150-151 ${}^{(O_2N)_3C} \longrightarrow {}^{(O_2N)_3C} \bigoplus {}^{(O_2N)_3C} \bigoplus$

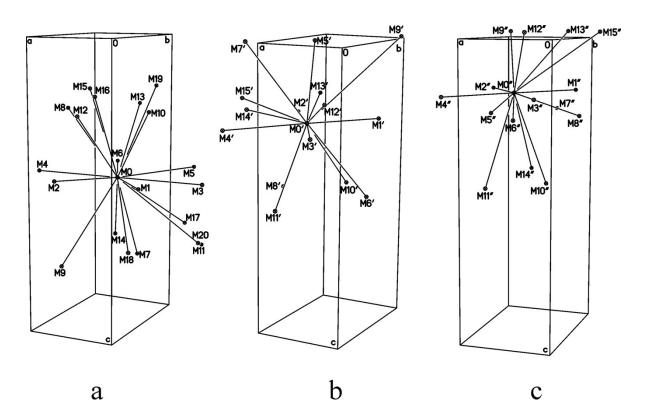
-32,39 ppm. IR: v = 3192, 3014, 2972, 2929, 2889, 2669, 2591, 2503, 1603, 1531, 1475, 1458, 1414, 1373, 1335, 1302, 1248, 1196, 1182, 1136, 1090, 1041, 968, 914, 879, 856, 839, 806, 785, 746, 654, 559 cm⁻¹; elemental analysis calcd (%) for C₁₁H₁₂N₁₀O₁₄ (508.28): C 25.99; H 2.38; N 27.56; found: C 26.01; H 2.30; N 27.51.

2-Morpholino-4,6-*bis*(**2,2,2-trinitroethoxy)-1,3,5-triazine** (**22c**). The yield is 80%, mp 175 °C ($_{O_2N})_{3}$ C (dec.). ¹H NMR (DMSO-d6) δ = 3.68 (s, 4H, CH₂NCH₂); 3.82 (s, 4H, CH₂OCH₂); 6.2 ppm (s, 4H, OCH₂). ¹³C NMR (CDCl₃) δ = 44.08 (CH₂NCH₂) 63.36 (OCH₂C(NO₂)₃), 65.69 (CH₂OCH₂), 122.06 (C(NO₂)₃), 165.32 (C-N), 169.79 ppm (C-OCH₂C(NO₂)₃).). IR: v = 3423, 3005, 2964, 2926, 2874, 1618, 1599, 1527, 1450, 1414, 1369,

1335, 1304, 1282, 1267, 1250, 1200, 1138, 1115, 1086, 1072, 1022, 889, 875, 856, 835, 804, 785, 748, 669, 650, 553, 540 cm⁻¹. elemental analysis calcd (%) for $C_{11}H_{12}N_{10}O_{15}$ (524.28), %: C 25.20; H 2.31; N 26.72; found: C 25.22; H 2.21; N 26.77.

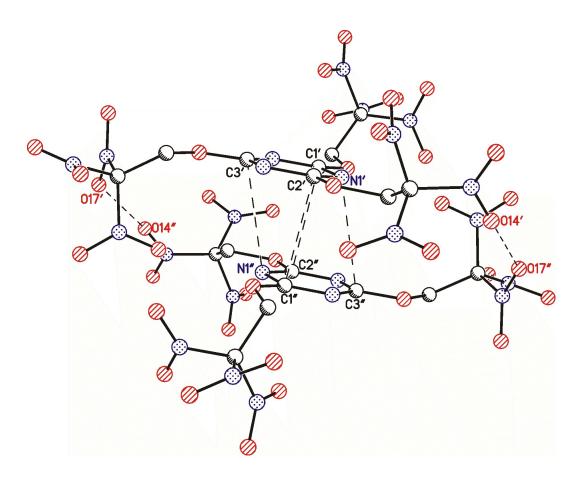
Torsion angle		16	21	20	
	А	A'	A''		
N1-C1-O1-C4	178.8(6)	-173.2(6)	-171.3(6)	-175.1(2)	-178.8(2)
C1-O1-C4-C5	129.9(6)	117.5(7)	113.7(7)	158.7(2)	-144.1(2)
01-C4-C5-N4	40.4(7)	36.5(8)	41.6(8)	49.2(2)	-44.2(2)
01-C4-C5-N5	-80.2(7)	-83.2(7)	-80.3(7)	-73.5(2)	75.8(2)
O1-C4-C5-N6	159.8(5)	155.9(6)	161.3(6)	168.6(2)	-163.6(2)
C4-C5-N4-O2	-131.3(7)	-127.4(7)	-121.1(7)	-141.0(2)	107.0(2)
C4-C5-N5-O5	-139.5(7)	-141.9(9)	-151.5(7)	-136.9(2)	169.6(2)
C4-C5-N6-O6	-141.6(7)	-142.2(7)	-140.6(7)	-145.8(2)	150.8(2)
N2-C2-O8-C6	172.7(6)	179.2(6)	-179.8(6)	177.9(2)	
C2-O8-C6-C7	160.7(7)	161.4(6)	162.7(6)	167.6(2)	
08-C6-C7-N7	46.8(9)	-50.0(7)	-50.2(7)	54.6(2)	
08-C6-C7-N8	-78.5(8)	73.6(7)	70.6(7)	-68.0(2)	
08-C6-C7-N9	166.1(6)	-167.2(5)	-168.5(5)	174.2(2)	
C6-C7-N7-O9	-114.3(10)	140.8(7)	143.7(7)	111.7(2)	
C6-C7-N8-O12	-127.1(8)	137.6(7)	123.3(7)	150.6(2)	
C6-C7-N9-O13	-157.7(8)	137.8(7)	144.5(7)	143.6(2)	
N3-C3-O15-C8	176.3(6)	179.7(6)	178.8(6)		
C3-O15-C8-C9	-131.8(7)	-145.6(6)	-143.2(6)		
O15-C8-C9-N10	-45.8(8)	-42.2(8)	-42.6(8)		
O15-C8-C9-N11	77.0(8)	80.5(7)	78.0(8)		
C8-C9-N10-O17	137.1(8)	130.0(7)	127.9(7)		
C8-C9-N11-O19	126.3(7)	146.2(7)	145.3(7)		
C8-C9-N12-O20	133.4(7)	130.6(7)	133.4(7)		

Table 18. Selected torsion angles (°) in symmetrically independent molecules A, A', A" of compound 16, as well as compounds 21 and 20.


Estimation of of pair intermolecular interaction energies was carried out as follows.

1. The closest molecular surroundings was chosen based on consideration of shortened intermolecular contacts. Molecule is considered to be the closest neighbour if at least one intermolecular contact is equal to or less than van-der-Waals radius + 0.1Å.

2. So chosen pairs were taken for quantum chemical calculation using X-ray geometry without further optimization


3. Calculation was carried out within M052X/6-311G(df,pd) level of theory using the Gaussian program [Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 03, ReVision E.01*; Gaussian, Inc.: Wallingford, CT, 2004.]

4. Pair intermolecular energy was estimated as the difference between the energy of dimer and twice the energy of isolated molecule including BSSE.

Figure 1S. Intermolecular interaction pattern of molecules A (a), A' (b) and A" (c) in the crystal structure of compound **16**. Central molecule and its environment are represented as small circles; central molecules are denoted as M0, M0', M0". Numbering of the environment corresponds to Tables 2S-4S.

Molecules in the crystal of compound **16** are connected to each other by peak/hole interactions of the nitrogen and oxygen atoms of the nitro groups as well as by stacking interactions between π -density of the triazine rings, and C-H...O contacts. Atoms of the nitro groups are involved in nearly all close contacts observed (Tables 2S-4S). For the molecule A, the strongest interaction is observed between molecules of the same type (A...A, M0...M1, M0...M2), however relatively strong interactions are also observed for A...A' and A...A" pairs (M0...M7, M0...M14, M0...M15). At the same time, molecules A' and A'' strongly interact to each other; the strongest attraction is provided by the triazine...triazine stacking interaction and by the nitro group...nitro group peak/hole interaction. A number of A'...A' and A''...A'' interacting pairs is relatively low and their energies are smaller.

Figure 2S. Stacking-connected dimer for molecular pair A'...A" (M0'...M12', Entry 12). The shortest atom...atom contacts are given by dashed lines.

Table 2S. Pair intermolecular interaction energies (kcal/mol) and shortened contacts (Å) of
molecule A of compound 16 with its closest environment in the crystal obtained at M052X/6-
311G(df,pd) level of approximation

Entry*	No**	Type of pair interaction	Shortened contact	Symmetry code	Distance	Energy		
1		AA	H4AO3	-1/2+x,1/2-y,z	2.505	-6.7		
2	_	AA	03H4A	1/2+x, 1/2-y, z	2.505	-6.7		
3	_	AA	H8A013	-1+x,y,z	2.641	-4.4		
4	_	AA	O13H8A	1+x,y,z	2.641	-4.4		
-			02108		3.011			
5	-	AA	O21O10	-1/2+x,1.5-y,z	2.810	-3.9		
6			08021	1/2 - 1.5	3.011	2.0		
6	-	AA	O10O21	1/2+x,1.5-y,z	2.810	-3.9		
7	(5')	AA'	017021'	1/2-x,1/2+y,1/2+z	2.852	-4.1		
8	(6')	AA'	01403'	1/2+x,1/2-y,z	2.822	-3.3		
9	(7')	AA'	H4BO20'	1-x,-y,1/2+z	2.440	-3.1		
10	(8')	AA'	C3O6'	-1/2+x,1/2-y,z	2.855	-2.4		
11	(0!)	(9') AA'	017012'	-x,1-y,1/2+z	2.872	-0.6		
11	(9)		019012'		2.974	-0.0		
12	(10')	AA'	O2O3'	x,y,z	3.083	-0.4		
13	(11')	AA'	0907'	x,1+y,z	2.924	-0.1		
			N1O6"		2.842			
14	14 (9")	4 (9")	(9") A	A A !!	N3O3"	1-x,1-y,1/2+z	3.064	E 1
14				(9)	(9)	14 (9)	(7) AA	C1O3"
			C2O6"		2.920			
15	(10")	AA"	O11O21"	X X Z	2.969	-4.0		
15	(10)	AA	N8O21"	x,y,z	2.966	-4.0		
16	(11")	AA"	O5O21"	-1/2+x,1/2-y,z	2.860	-1.3		
17	(12")	AA"	01907"	1/2-x, 1/2+y, 1/2+z	2.836	-1.1		
17	(12)	AA	O21O7"	1/2 - x, 1/2 + y, 1/2 + z	2.941	-1.1		
18	(13")	AA"	O7O2"	1/2-x,-1/2+y,1/2+z	2.875	-1.0		
19	(14")	AA"	011012"	-1/2+x,1.5-y,z	2.989	-0.8		
20	(15")	AA"	01705"	-x,1-y,1/2+z	3.038	-0.5		
		Sum of all inte	raction energie	es of molecule A		-58.1		

* Numbers of entries correspond to numbers of neighbouring molecules in Figure 1S

** Numbers of entries given in the second column in parentheses correspond to the equivalent interactions from Tables 3S and 4S

Table 3S. Pair intermolecular interaction energies (kcal/mol) and shortened contacts (Å) of molecule A' of compound **16** with its closest environment in the crystal obtained at M052X/6-311G(df,pd) level of approximation

O(ui,pu		approximatio				
Entry*	No**	Type of pair interaction	Shortened contact	Symmetry code	Distance	Energy
			O12'N2'		2.991	
			014'010'		3.001	
1'	—	A'A'	014'C2'	-1/2+x,1/2-y,z	2.971	-6.8
			H6'B010'		2.426	
			010'014'		3.001	
			O10'H6'B		2.426	
2'	-	A'A'	N2'012'	1/2+x,1/2-y,z	2.991	-6.8
			C2'014'		2.971	
3'	_	A'A'	019'020'	-1/2+x,-1/2-y,z	3.014	-0.3
4'	_	A'A'	020'019'	1/2+x,-1/2-y,z	3.014	-0.3
5'	(7)	A'A	021'017	1/2-x,-1/2+y,-1/2+z	2.852	-4.1
6'	(8)	A'A	03'014	-1/2+x,1/2-y,z	2.822	-3.3
7'	(9)	A'A	O20'H4B	1-x,-y,-1/2+z	2.440	-3.1
8'	(10)	A'A	O6'C3	1/2+x,1/2-y,z	2.855	-2.4
			012'017		2.872	
9'	(11)	A'A	012'019	-x,1-y,-1/2+z	2.974	-0.6
10'	(12)	A'A	03'02	x,y,z	3.083	-0.4
11'	(13)	A'A	07'09	x,-1+y,z	2.924	-0.1
			O11'C4"	-1/2+x,1/2-y,z	3.124	-10.4
			014'017"		2.818	
			017'014"		2.827	
			O18'N1"		2.997	
1.01	(711)		N1'018"		2.991	
12'	(5")	(5") A'A"	N1'C3"		3.225	
			C1'C2"		3.129	
			C2'C1"		3.125	
			C3'N1"		3.217	
			C4'011"		3.152	
			02'017"		2.952	
			02'019"		2.987	
13'	(6")	A'A"	09'07"	x,y,z	2.934	-8.4
			014'016"	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3.015	
			N9'016"		2.958	
			07'09"		3.034	
14'	(7")	A'A"	017'02"	x,-1+y,z	2.963	-7.1
			019'02"		2.982	
			05'021"		2.975	
1.51		A 1 A 11	O5'N12"	1/0 . 1/0	2.955	4 -
15'	(8")	A'A"	O20'O5"	1/2+x,1/2-y,z	2.946	-4.5
			N12'05"		2.931	
		Sum of all inte		es of molecule A		-58.6
1	- C t			eighbouring molecule	·	

* Numbers of entries correspond to numbers of neighbouring molecules in Figure 1S

** Numbers of entries given in the second column in parentheses correspond to the equivalent interactions from Tables 2S and 4S

Table 4S. Pair intermolecular interaction energies (kcal/mol) and shortened contacts (Å) of molecule A"
of compound 16 with its closest environment in the crystal obtained at M052X/6-311G(df,pd) level of
approximation

Entry*	No**	Type of pair interaction	Shortened contact	Symmetry code	Distance	Energy
1"	_	A"A"	010" 014" C2"014"	-1/2+x,1.5-y,z	3.000 2.998	-7.5
2"	_	A"A"	014"010" 014"010" 014"C2"	¹ / ₂ +x,1.5-y,z	<u>2.998</u> <u>3.000</u> 2.998	-7.5
3"	_	A"A"	020"019"	-1/2+x,1/2-y,z	3.049	-0.4
4"	_	A"A"	019"020"	$\frac{1}{2}+x, \frac{1}{2}-y, z$	3.049	-0.4
5"	(12')	A"A'	O11"C4' O14"O17' O17"O14' O18"N1' N1"O18' N1"C3' C1"C2' C2"C1' C3"N1' C4"O11'	¹ / ₂ +x,1/2-y,z	3.152 2.827 2.818 2.991 2.997 3.217 3.125 3.129 3.225 3.124	-10.4
6"	(13')	A"A'	017"02' 019"02' 07"09' 016"014' 016"N9'	x,y,z	2.952 2.987 2.934 3.015 2.958	-8.4
7"	(14')	A"A'	09"07' 02"017' 02"019'	x,1+y,z	3.034 2.963 2.982	-7.1
8"	(15')	A"A'	O5"O20' O5"N12' O21"O5' N12"O5'	-1/2+x,1/2-y,z	2.946 2.931 2.975 2.955	-4.5
9"	(14)	A"A	O3"N3 O3"C1 O6"N1 O6"C2	1-x,1-y,-1/2+z	3.064 3.158 2.842 2.920	-5.4
10"	(15)	A"A	O21"O11 O21"N8	x,y,z	2.969 2.966	-4.0
11"	(16)	A"A	021"05	1/2+x,1/2-y,z	2.860	-1.3
12"	(17)	A"A	07"019 07"021	1/2-x,-1/2+y,-1/2+z	2.836 2.941	-1.1
13"	(18)	A"A	02"07	1/2-x, 1/2+y, -1/2+z	2.875	-1.0
14"	(19)	A"A	012"011	¹ / ₂ +x,1.5-y,z	2.989	-0.8
15"	(20)	A"A	05"017	-x,1-y,-1/2+z	3.038	-0.5
			raction energie	s of molecule A		-58.3

* Numbers of entries correspond to numbers of neighbouring molecules in Figure 1S ** Numbers of entries given in the second column in parentheses correspond to the equivalent interactions from Tables 2S and 3S

Table 5S. Pair intermolecular interaction energies (kcal/mol) and shortened contacts (Å) of molecule of
compound 21 with its closest environment in the crystal obtained at M052X/6-311G(df,pd) level of
approximation

Entry	Shortened contact	Symmetry Code	Distance	Energy
Lifti y	N2N10		2.956	Linergy
	N2H2		2.936	
1		3-x,2-y,1-z		-16.6
	N10N2	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.956	
	H2N2		2.107	
	O10N3		3.135	
2	N3010	2-x,2-y,1-z	3.135	-11.2
-	O9N10	2 <i>m</i> , 2 <i>f</i> , <i>1 2</i>	3.109	11.2
	N1009		3.109	
	0402		2.941	
	0204'		2.761	
	N4O4'		3.094	
3	06011	1-x,2-y,-z	3.106	-7.4
	01106		3.106	
	O2N1		3.061	
	N1O2		3.061	
	O4C1		3.240	
	O4O4'		3.079	
	O5N2		3.113	
	05C2		3.053	
	05C3	2-x,2-y,-z	3.319	
4	N205		3.113	-6.6
	C205		3.053	
	C305		3.319	
	07011		3.014	
	01107		3.014	
	03H4A		2.491	
			3.076	
5	01408	1		20
5	014011	-1+x,y,z	2.987	-3.8
	014012		3.076	
	O14N8		2.933	
	08014		3.076	
r.	011014		2.987	• •
6	012014	1+x,y,z	3.076	-3.8
	N8014		2.933	
	H4AO3		2.491	
7	01106	x,-1+y,z	3.106	-2.9
/	01303	Λ,-Ι ' Υ,Ζ	2.980	-4.9
8	03013	v 1⊥v 7	2.980	-2.9
0	06011	x,1+y,z	3.106	-2.9
9	01307	-1+x,-1+y,z	3.083	-2.3
10	07013	1+x,1+y,z	3.083	-2.3
	0607		3.050	
11	0706	2-x,3-y,-z	3.050	-0.4
	0707	,- ,, <u> </u> ,	3.064	
	0909		2.811	
12	09013	1-x,1-y,1-z	3.043	-0.1
	01309	1 A,1 y,1-Z	3.043	0.1
	010012		3.144	
13	010012	2-x,1-y,1-z	3.144	-0.1
	012010	· •	5.144	

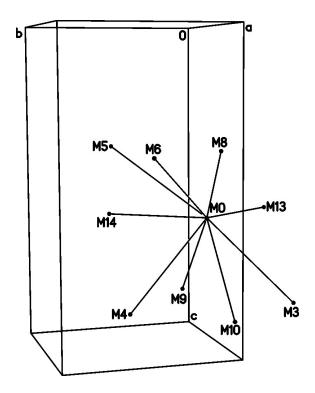
Table 6S. Pair intermolecular interaction energies (kcal/mol) and shortened contacts (Å) of molecule of compound **20** with its closest environment in the crystal obtained at M052X/6-311G(df,pd) and M052X/aug-cc-pvdz levels of approximation^a.

Entry	Shortened contact	Symmetry Code	Distance	Energy ^b	Energy ^c	Comment	
	O8N2		2.822		2		
	08H2		1.963				
1	N208	1-x,1-y,-z	2.822	-10.5	-10.3	Inside the layer	
	H208		1.963				
	0803		3.138				
	N2O3		3.141				
2	C2O3	x,1/2-y,-1/2+z	2.862	-9.3	-9.2	Inside the layer	
	09N1	x,1/2 y, 1/2/2	2.763	.5	.2	inside the layer	
	O9H1		1.912				
	0308		3.138				
	O3N2		3.141				
3	03C2	x,1/2-y,1/2+z	2.862	-9.3	-9.2	Inside the layer	
5	N109	n,1/2	2.763	2.5		inside the idjer	
	H109		1.912				
	0406		3.090				
	09C4	1/2 1/2	3.314				
4	O9H4A	x,-1/2-y,-1/2+z	2.344	-8.1	-7.9	Inside the layer	
	N3O3		3.149				
	O3N3		3.149				
_	0604	1/2 1/2	3.090	0.1	- 0	T • 1 .1 1	
5	C4O9	x,-1/2-y,1/2+z	3.314	-8.1	-7.9	Inside the layer	
	H4AO9		2.344				
	O9C3		3.247				
6	C309	1-x,-y,-z	3.247	-5.9	-5.9	Inside the layer	
	C3C3		3.488	• • •			
	0108		3.041				
7	N108	1-x,-1/2+y,1/2-z	2.959	-3.7	-3.7	Inside the layer	
	C1O8		2.966				
	0801		3.041				
8	O8N1	1-x,1/2+y,1/2-z	2.959	-3.7	-3.7	Inside the layer	
	O8C1	-	2.966				
	0205		2.904				
	O5O2		2.904				
9	0506	v v 1 -	3.092	-2.1	-2.0	Between layers	
7	O5N4	-x,-y,1-z	3.117	-2.1	-2.0	Detween layers	
	0605		3.092				
	N4O5		3.117				
10	0504	-x,-1/2+y,1/2-z	3.118	-1.8	-1.9	Between layers	
10	0705	-x,-1/2+y,1/2-Z	2.956	-1.0	-1.9	Detween layers	
11	0405	-x,1/2+y,1/2-z	3.118	-1.8	-1.9	Between layers	
	0507	-x,1/2+y,1/2-Z	2.956	-1.0	-1.9	Detween layers	
12	0702	x,-1+y,z	3.095	-0.1	-0.3	Inside the layer	
13	0207	x,1+y,z	3.095	-0.1	-0.3	Inside the layer	
14	0606	-x,-1-y,1-z	3.139	-0.1	-0.2	Between layers	

^a in columns 5 and 6, energy obtained at M052X/6-311G(df,pd) and M052X/aug-cc-pvdz levels, respectively; it is seen that differences in energies do not exceed 0.2 kcal/mol

Entry	Compound	Density/T ^a	Density ^b
1	$HO C(NO_2)_3$	1.839/100	1.777
2	$(NO_2)_3C \longrightarrow O \longrightarrow C(NO_2)_3$	1.975/100	1.908
3	$(NO_2)_3C$ N O $C(NO_2)_3$ O O O $C(NO_2)_3$ NO_2 O	1.922/173	1.881
4	$(NO_2)_3C$ NO_2 H NO_2 N N N O $C(NO_2)_3$	1.815/173	1.776
5	$\underset{O}{\overset{H_2N}{}} O \underbrace{C(NO_2)_3}$	1.839/173	1.799
6	O_2N N V O $C(NO_2)_3$	1.729/243	1.712
7	$(NO_2)_3C \underbrace{O}_{O} \underbrace{H}_{O} \underbrace{N}_{O} \underbrace{H}_{O} \underbrace{N}_{O} \underbrace{O}_{O} C(NO_2)_3$	1.899/173	1.858
8	$(NO_2)_3C O C(NO_2)_3$	1.844 ^b	1.813
9	$(NO_2)_3C \underbrace{O}_{O} \underbrace{O}_{O} C(NO_2)_3$ $(NO_2)_3C \underbrace{O}_{O} C(NO_2)_3$ $(NO_2)_3C$	1.938 ^b	1.905

Table 7S. List of selected energetic aliphatic trinitroethoxy compounds studied by X-ray crystallography.


^a Density (g/cm³) calculated from X-ray data at experimental temperature.

^b Density (g/cm³) recalculated at room temperature for easily comparison; recalculation was carried out based on data from Tables 10s and 11S, and our recent X-ray studies on polynitro compounds and high nitrogen heterocycles at 100K and room temperature [Refs. 2c, 2p from main text, and Sheremetev, A. B.; Aleksandrova, N. S.; Suponitsky, K. Yu.; Antipin M. Yu.; Tartakovsky, V. A. *Mendeleev Commun.*, **2010**, *20*, 249-252; Vatsadze, I. A.; Serushkina, O. V.; Dutov, M. D.; Shkineva, T. K.; Suponitsky, K. Yu.; Ugrak, B. I.; Dalinger, I. L. *Chem. Heterocycl. Comp.*, **2015**, *51*, 695-703]. It appears that decrease of density from 100 to 298K

vary in narrow range (3-4%). Densities were recalculated using 3.5% as average value in assumption of linear dependence of density vs. temperature ($d_T = -kT+b$).

^c There are two polymorphs. Only the densest polymorph is taken into consideration. For entry 8, density of the second polymorph is 1.778 g/cm³ at 200K. For entry 9, density of the second polymorph is 1.808 g/cm³ at 258K.

A replacement at the carbonyl core of one trinitroethoxy moiety with amino group or substituted amino group leads to a reduction in density (compare entry 2 with entries 4-7). Compound from entry 7 which form strongly H-bonded dimers (as in the case of compound **21**) have greatest density among these amides and contain four independent molecules in the asymmetric unit cell. Dramatic changes in density is also observed for ethers bearing four or two trinitroethoxy moieties at the one-carbon core, respectively (compare entries 8 and 9).

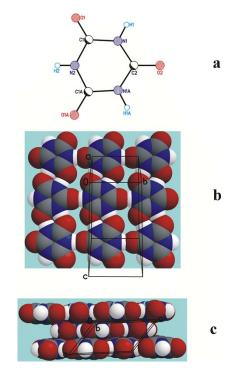

Figure 3S. Intermolecular interaction pattern of the central molecule of *bis*(2,2,2-trinitroethyl) carbonate (see, table 1, entry 2). Environment is presented as small circles; the central molecule is denoted as M0; numbering of the environment corresponds to numbering in Table 8S; only neighbours with interaction energy higher than 2 kcal/mol are shown.

Table 8S. Pair intermolecular interaction energies (kcal/mol) and shortened contacts (Å) of *bis*(2,2,2-trinitroethyl) carbonate molecule with its closest environment in the crystal obtained at M052X/6-311G(df,pd) level of approximation.

Entry	Shortened contact	Symmetry Code	Distance	Energy
	O5N6		2.994	
1	05014	1/2 1/2	2.863	1.2
1	05015	1/2-x,-y,-1/2+z	2.942	-1.2
	08013		2.942	
	N6O5		2.994	
2	01308	1/0 1/0	2.942	1.0
2	01405	1/2-x,-y,1/2+z	2.863	-1.2
	01505		2.942	
3	012015	1-x,-1/2+y,1.5-z	2.993	-4.4
4	015012	1-x,1/2+y,1.5-z	2.993	-4.4
	O8C2		3.079	2.2
5	0801	-1/2+x,1/2-y,1-z	3.046	-2.2
6	C208	1/0 . 1/0 1	3.079	
6	0108	1/2+x,1/2-y,1-z	3.046	-2.2
	0506		2.957	
7	0605	-x,-y,1-z	2.957	-0.9
	0606	, , , , , , , , , , , , , , , , , , ,	3.070	
	H201		2.447	
	C201		3.260	
	N101	1-x,-y,1-z	3.000	
0	O1H2		2.447	10.0
8	O1C2		3.260	-10.6
	O1N1		3.000	
	0105		3.068	
	0501		3.068	
	02011		3.027	
	03011		2.985	
9	07011	-1/2+x,y,1.5-z	3.072	-4.7
	O14N4		3.104	
	014012		2.838	
	N4014		3.104	
	01102		3.027	
10	01103	1/2+x,y,1.5-z	2.985	-4.7
	01107	~~~	3.072	
	012014		2.838	
11	09015	x,1/2-y,-1/2+z	3.075	-0.1
12	01509	x,1/2-y,1/2+z	3.075	-0.1
	O4N3		3.012	
13	0407	1/2-x,-1/2+y,z	2.832	-5.3
	0408		3.093	
	N3O4		3.012	
14	0704	1/2-x, 1/2+y, z	2.832	-5.3
	0804		3.093	

Description of the crystal packing of cyanuric acid

In order to find the reasons for lower density of the crystal structure of cyanuric acid in comparison to 1,3,5-triazines **16**, **20**, **21**, we have investigated crystal structure of cyanuric acid in the same way as done for the triazines (using combination of geometrical and energetic approaches). In the case of cyanuric acid, visual analysis coincides with a description based on pair intermolecular energies (Table 9S).

Figure 4S. General view of the molecule (a), and crystal packing fragments of cyanuric acid. Atoms are presented as spheres of van-der-Waals radius (C: 1.75; N: 1.61; O: 1.58; H: 1.2 Å; Rowland, R.S.; Taylor, R. *J. Phys. Chem.*, **1996**, *100*, 7384-7391). b) H-bonded layers, projection onto *bc* crystallographic plane; c) projection onto *ac* crystallographic plane.

By means of strong H-bonds, molecules are assembled into the layers parallel to the *bc* crystallografic plane (Fig. 4Sb) while connection between layers is provided by $\pi...\pi$ stacking interactions (Fig. 4Sc). The former interactions are stronger than the latter ones, therefore energy inside the layer is higher (37.4 kcal/mol, M1, M2, M3, M4, M13, M14) than that between the layers (-19.4 kcal/mol, M5-M12). Nevertheless the stacking interactions are still significantly stronger than nitro...nitro interactions observed in trinitroethoxy triazines. Therefore crystal structure of cyanuric acid is stabilized by strong interactions in all three directions. Why its density is lower than that of trinitroethoxy triazines? An answer to this question can be obtained by a quick glance at Figure 4S. Due to strong H-bonding interactions and their directionality, molecules in H-bonded layer (Figure 4Sb) are arranged so that layers contain voids (strong intermolecular bonding restricts molecular freedom of movement). In perpendicular direction, as stated above, intermolecular interactions are weaker, and molecules are packed more densely (no voids observed in Figure 4Sc). However intralayer voids cannot be filled with atoms of the adjacent layers that leads to lower density of cyanuric acid in comparison to trinitroethoxy triazines.

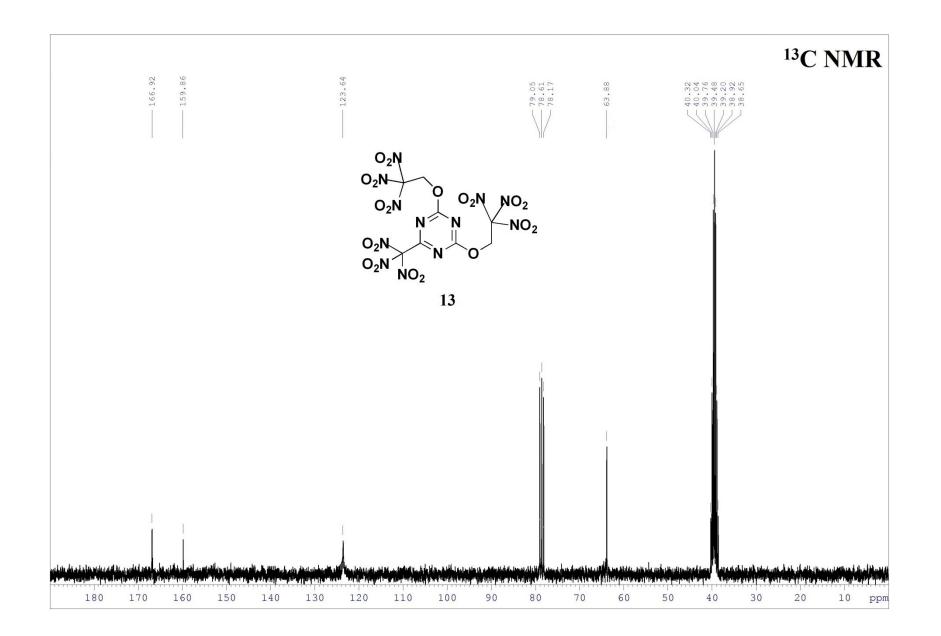
Entry	Shortened contact	Symmetry Code	Distance	Energy	Comment
1	N101	1/2-x,1/2-y,-z	2.814	-12.2	Inside the layer
	O1N1		2.814		
	O1H1		1.806		
	H1O1		1.806		
	N1B01B	1/2-x,1/2-y,1-z	2.814	-12.2	Inside the layer
2	H1BO1B		1.806		
	O1BN1B		2.814		
	O1BH1B		1.806		
3	N2O2	x,-1+y,z	2.780	-6.4	Inside the layer
	H2O2		1.770		
4	O2N2	x,1+y,z	2.780	-6.4	Inside the layer
4	O2H2		1.770		
	C1C1	-x,-y,-z	3.367	-4.1	Between layers
	C101		2.978		
5	N2O1		3.125		
5	O1C1		2.978		
	O1N2		3.125		
	0101		3.065		
6	N2O1B	1-x,-y,1-z	3.125	-4.1	Between layers
	C1BC1B		3.367		
	C1BO1B		2.978		
	O1BN2		3.125		
	O1BC1B		2.978		
	O1BO1B		3.065		
	C1BO2	-1/2+x,-1/2+y,z	3.243	-2.6	Between layers
7	O1BC2		3.059		
	O1BO2		3.046		
8	C2O1	-1/2+x,1/2+y,z	3.059	-2.6	Between layers
	O2C1		3.243		
	0201		3.046		
9	C1O2	1/2+x,-1/2+y,z	3.243	-2.6	Between layers
	O1C2		3.059		
	0102		3.046		
10	C2O1B	1/2+x,1/2+y,z	3.059	-2.6	Between layers
	O2C1B		3.243		
	O2O1B		3.046		
11	no close contacts	-x,1-y,-z	_	-0.4	Between layers
12	no close contacts	1-x,1-y,1-z	_	-0.4	Between layers
13	no close contacts	1/2-x,-1/2-y,-z	_	-0.1	Inside the layer
14	no close contacts	1/2-x,-1/2-y,1-z	_	-0.1	Inside the layer

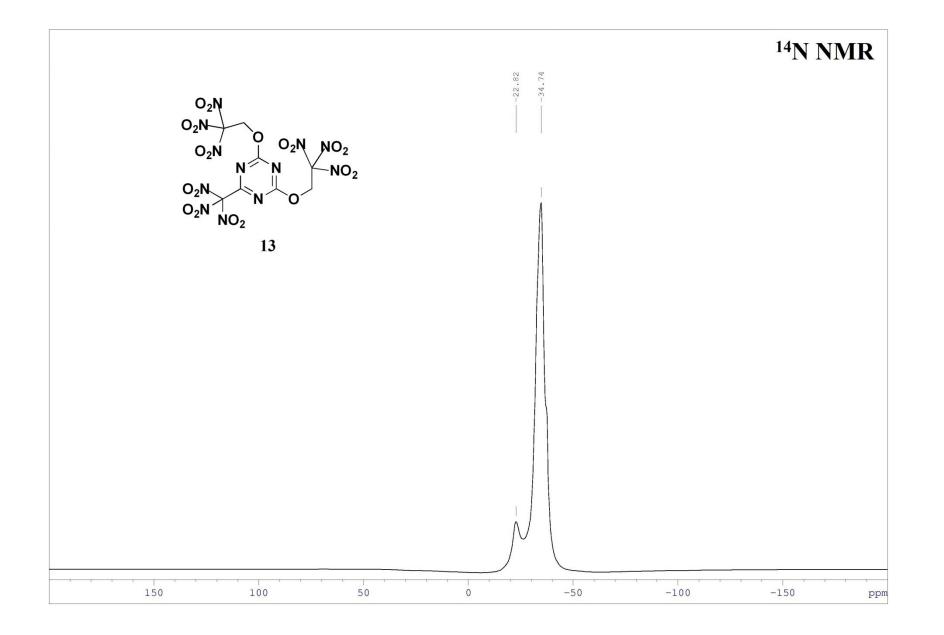
Table 9S. Pair intermolecular interaction energies (kcal/mol) and shortened contacts (Å) of cyanuric acid with its closest environment in the crystal obtained at M052X/6-311G(df,pd) level of approximation.

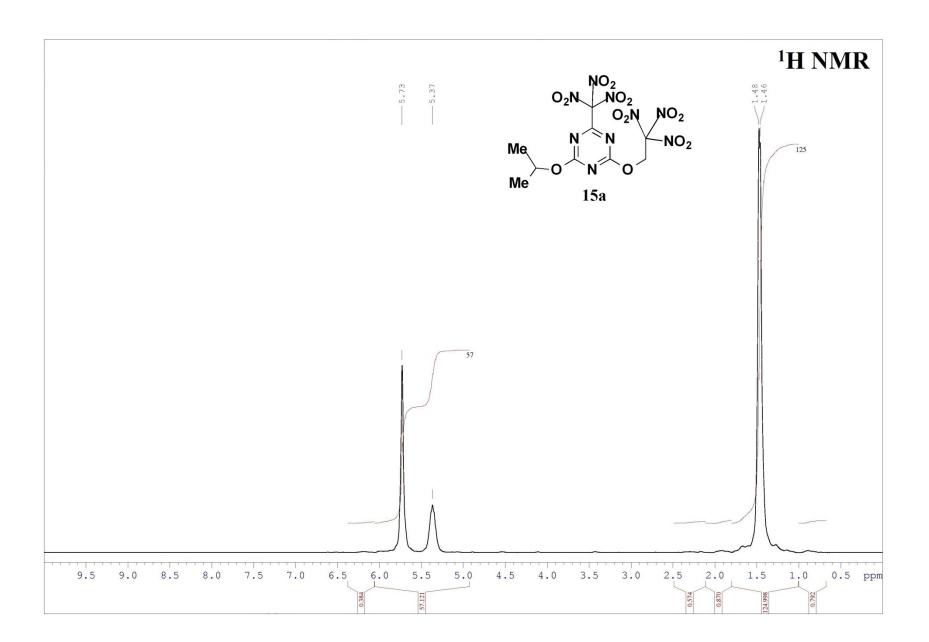
X-ray crystallography.

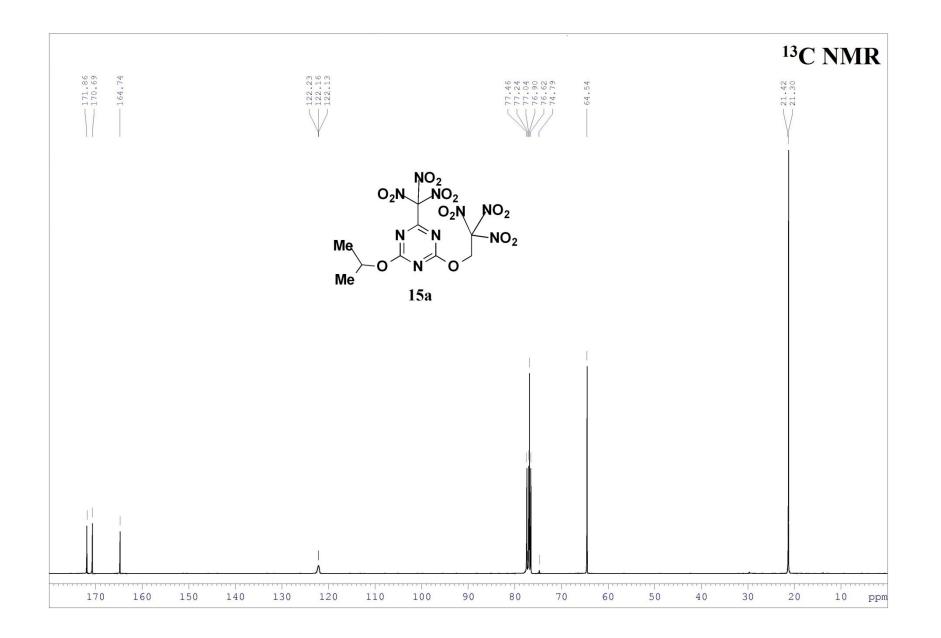
Collected data were analyzed by the SAINT μ SADABS programs incorporated into APEX2 program package [*APEX2 and SAINT*, Bruker AXS Inc., Madison, Wisconsin, USA, **2009**]. All structures were solved by the direct methods and refined by the full-matrix least-squares procedure against F^2 in anisotropic approximation. Hydrogen atoms were located in the difference Fourier maps and refined in isotropic approximation. The refinement was carried out with the SHELXTL program [Sheldrick, G. M. *Acta Crystallogr.*, **2008**, *A64*, 112-122]. The details of data collection and crystal structures refinement for low-temperature experiments are summarized in Table 10S while those for room-temperature experiments are presented in Table 11S. CCDC (numbers 1434738, 1434739 and 1434740 for compounds **16**, **20**, and **21**, respectively at 100K, and 1436944, 1436945 for compounds **21**, **20** at 298K, respectively) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

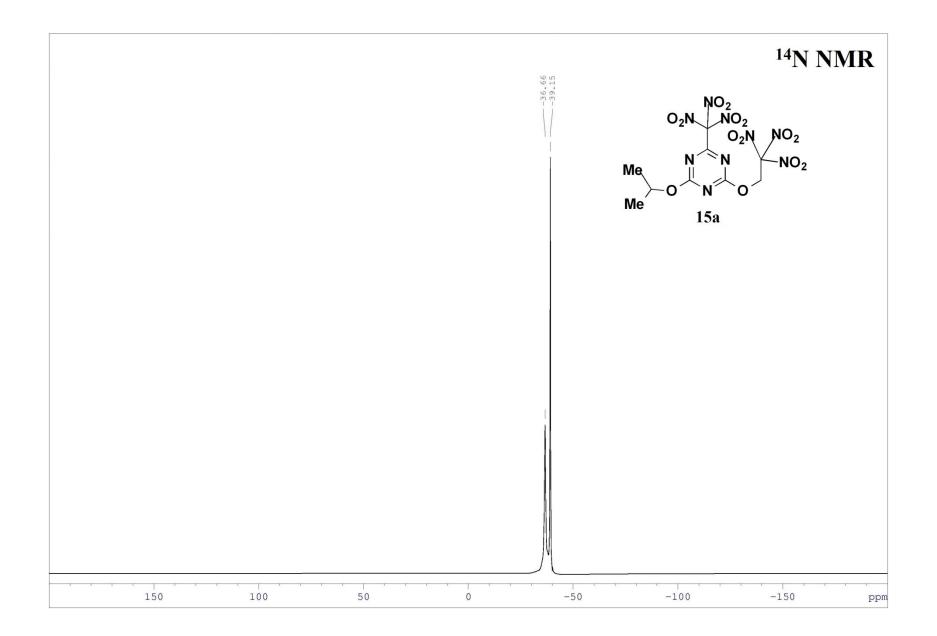
Table 10S. Crystallographic data for low-temperature experiment (298K) for compounds 16, 21,and 20.


	16	21	20
Empirical formula	C ₉ H ₆ N ₁₂ O ₂₁	C ₇ H ₆ N ₁₀ O ₁₄	C ₅ H ₄ N ₆ O ₉
Fw	618.26	454.22	292.14
Temperature, K	100	100	100
Crystal system	Orthorhombic	Triclinic	Monoclinic
Space group	$Pna2_1$	<i>P</i> -1	$P2_{1}/c$
a, Å	10.9186(15)	6.0315(5)	13.2903(13)
b, Å	17.007(2)	11.7427(10)	6.6865(7)
<i>c</i> , Å	35.300(5)	11.9923(10)	11.6787(12)
α , deg	90.00	101.500(2)	90.00
β , deg	90.00	101.738(2)	93.175(2)
γ, deg	90.00	97.607(2)	90.00
<i>V</i> , Å ³	6555.0(15)	801.56(12)	1036.24(18)
Ζ	12	2	4
ρ_{calc} , g·cm ⁻³ (at 100K)	1.879	1.882	1.873
$\rho_{\text{calc}}, \text{g-cm}^{-3}$ (at 298K)	1.809	1.808	1.797
F(000)	3744	460	592
μ, mm ⁻¹	0.188	0.183	0.181
θ range, deg.	2.10 - 30.20	1.78 - 28.00	1.53 – 26.99
Reflections collected	80248	14710	15138
Independent reflections / R _{int}	9824/0.1717	3862/0.0456	2234/0.0482
Completeness to theta θ , %	99.4	100.0	99.0
Refined parameters	1134	298	189
$GOF(F^2)$	1.041	1.058	1.141
Reflections with $I > 2\sigma(I)$	6038	2834	1803
$R_1(F) (I > 2\sigma(I))^{[a]}$	0.0792	0.0513	0.0467
$wR_2(F^2)$ (all data) ^[b]	0.2113	0.1240	0.0944
Largest dif. peak/hole, $e \cdot \text{Å}^{-3}$	$\frac{0.553 / -0.487}{P_{0} = (\sum E_{1} / E_{2}^{2})^{2}}$	0.473 / -0.443	0.313 / -0.264


[a] $R_1 = \sum |F_0 - |F_c|| / \sum (F_0)$. [b] $wR_2 = (\sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2]^{\frac{1}{2}}$


	16*	21	20
Formula	C ₉ H ₆ N ₁₂ O ₂₁	C ₇ H ₆ N ₁₀ O ₁₄	C ₅ H ₄ N ₆ O ₉
Fw	618.26	454.22	292.14
Temperature, K	298	298	298
Crystal system	Orthorhombic	Triclinic	Monoclinic
Space group	$Pna2_1$	<i>P</i> -1	$P2_{1}/c$
a, Å	11.13(2)	6.1667(12)	13.6640(13)
<i>b</i> , Å	17.05(3)	11.796(2)	6.7290(6)
<i>c</i> , Å	35.85(7)	12.164(2)	11.7479(11)
α , deg.	90.00	101.234(4)	90.00
β , deg.	90.00	102.649(4)	91.804(2)
γ, deg.	90.00	97.005(4)	90.00
$V, Å^3$	6805(9)	834.2(3)	1079.63(17)
Z	12	2	4
ρ_{calc} , g·cm ⁻³ (at 298K)	1.809	1.808	1.797
F(000)	3744	460	592
μ, mm ⁻¹		0.176	0.174
θ range, deg.		1.76 - 28.00	1.49 - 27.00
Reflections collected		15317	16874
Independent reflections / R_{int}		4024/0.0551	2369/0.0550
Completeness to theta θ , %		99.9	100.0
Refined parameters		298	189
$GOF(F^2)$		1.003	1.141
Reflections with $I > 2\sigma(I)$		2143	1490
$R_1(F) (I \geq 2\sigma(I))^a$		0.0584	0.0501
$wR_2(F^2)$ (all data) ^b		0.1521	0.1477
Largest diff. peak/hole, e·Å ⁻³		0.250 / -0.239	0.267 / -0.271


Table 11S. Crystallographic data of room-temperature experiment (298K) for compounds 16,21, and 20.


* quality of the room-temperature X-ray experiment for compound **16** is very low due probably to significant thermal motion and possible disorder of the nitro groups. We have determined only unit cell parameters that allow us to estimate room-temperature crystal packing density

