SUPPLEMENTARY DATA

(13 pages)

Au-deposited porous single-crystalline ZnO nanoplates for gas sensing

detection of total volatile organic compounds

Xue Han, Yu Sun, Zhenyu Feng, Guochen Zhang, Zichun Chen, and Jinhua Zhan*

National Engineering Research Center for Colloidal Materials and Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, Jinan Shandong, 250100, P. R. China.

Table of contents

- 1. Figure S1. Mapping images of (a) 1% Au@ZnO, (b) 3% Au@ZnO and (c) 5% Au@ZnO.
- 2. Table S1 Elemental analysis of 1% Au@ZnO, 3% Au@ZnO and 5% Au@ZnO.
- 3. Calculation of the average size of Au nanoparticles obtained from XRD pattern.
- 4. Table S2 Optimum temperature of each sensor for target gases of VOCs.
- 5. Figure S2. The relation between the sensor sensitivity and VOCs concentration measured at 360 °C for 5% Au@ZnO sensor.
- 6. Figure S3. Response curves of 5% Au@ZnO sensor towards methanol, diethyl ether, acetone, chlorobenzene, trichloro ethylene, methylbenzene, o-xylene and ethyl acetate with increasing concentration at 360 °C.
- 7. Figure S4. Typical nitrogen adsorption-desorption isotherm and BJH pore size distribution plots (inset) of (a) porous ZnO nanoplates and (b) 5% Au@ZnO.
- 8. Figure S5. SEM images of (a) (c) porous ZnO nanoplates and (b) (d) 5% Au@ZnO.
- 9. Table S3. The response time and recovery time of 5% Au@ZnO sensor at 100ppm.
- 10. Table S4.The response/recovery characteristics of other sensors based on metal oxide nanostructures.
- 11. Table S5. Previous reported about sensing performance of Au on ZnO nanoplates.
- 12. Table S6. Response of representative gases of each group.

Figure S1. Mapping images of (a) 1% Au@ZnO, (b) 3% Au@ZnO and (c) 5% Au@ZnO.

Element	1% Au@ZnO	3% Au@ZnO	5% Au@ZnO
0	55.39	57.09	52.55
Zn	43.95	41.78	44.78
Au	0.65	1.14	2.67

Table S1 Elemental analysis of 1% Au@ZnO, 3% Au@ZnO and 5% Au@ZnO

Calculation of the average size of Au nanoparticles obtained from XRD pattern.

According to the XRD patterns, the average size also can be calculated by the full width at half maximum (FWHM), using the Scherrer equation:

$$D = K\lambda/B_1 \cos \theta$$

where D represents the average size of the nanocrystalline, λ is the wavelength of incident X-rays radiation (0.15406 nm for Cu K α), B_{1/2} represents the FWHM of the diffraction peak at 2 θ , θ is the diffraction angle, and K is the Scherrer constant. The value for the coefficient "K", which is closed to 0.89, depends on the geometry of the crystallites [1, 2]. Take (111) peak of Au as examples, the average Au nanoparticles sizes of 1% Au@ZnO, 3% Au@ZnO and 5 % Au@ZnO were 12.80nm, 16.93nm and 14.29nm, respectively, which is closed to the results obtained according to TEM images.

- [1]. H. P. Klug and L. E. Alexander, *X-ray diffraction procedures*, Wiley New York, 1954.
- [2]. T. KumaráSarma, Chemical Communications, 2002, 1048-1049.

Sensor	Optimum	Target gases
materials	temperature (°C)	
Pure ZnO	260	diethyl ether, methanol
nanoplate	360	acetone, formaldehyde, trichloro ethylene, ethyl acetate,
S		isoprene, butyl acetate, hexaldehyde
	460	chlorobenzene, o-xylene, n-heptane, benzene, toluene, n-
		decane
1%	360	acetone, methanol, formaldehyde, ethyl acetate, benzene, o-
Au@ZnO		xylene, chlorobenzene, isoprene, butyl acetate, hexaldehyde
	460	diethyl ether, n-heptane, trichloro ethylene, toluene, n-
		decane
3%	260	methanol, trichloro ethylene
Au@ZnO	360	acetone, formaldehyde, diethyl ether, ethyl acetate,
		benzene, o-xylene, chlorobenzene, isoprene, butyl acetate,
		hexaldehyde
	460	n-heptane, toluene, n-decane
5%	260	methanol, trichloro ethylene
Au@ZnO	360	acetone, diethyl ether, ethyl acetate, benzene, toluene, o-
		xylene, chlorobenzene, isoprene, butyl acetate, hexaldehyde
	460	formaldehyde, n-heptane, n-decane

Table S2 Optimum temperature of each sensor for target gases of VOCs.

Figure S2. The relation between the sensor sensitivity and VOCs concentration measured at 360 °C for 5% Au@ZnO sensor.

Figure S3. Response curves of 5% Au@ZnO sensor towards methanol, diethyl ether, acetone, chlorobenzene, trichloro ethylene, methylbenzene, o-xylene and ethyl acetate with increasing concentration at 360 °C.

Figure S4. Typical nitrogen adsorption-desorption isotherm and BJH pore size distribution plots (inset) of (a) porous ZnO nanoplates and (b) 5% Au@ZnO.

Figure S5. SEM images of (a) (c) porous ZnO nanoplates and (b) (d) 5% Au@ZnO.

Figure S5 (a) shows the pure ZnO, composed of plate-like nanostructures with edge thickness of about 22 nm and porous surfaces. Figure S6 (b) displays the Au@ZnO nanoplates, with the edge thickness of about 24 nm. The dimensions of porous ZnO nanoplates and 5% Au@ZnO were showed in figure (c) (d). The ZnO nanoplates is about 6.5µm long and 4µm wide. And after the photodeposition process, the 5% Au@ZnO still kept plate-like morphology.

Representative gases	Response time(s)	Recovery time(s)
methanol	4	3
chlorobenzene	10	14
benzene	6	4
n-heptane	3	4
isoprene	3	4
ethyl acetate	4	8
formaldehyde	30	12

Table S3. The response time and recovery time of 5% Au@ZnO sensor at 100ppm

Representative gases of	Sensor materials	response/rec	References
Representative gases of	School matchais	responserree	References
VOCs (100ppm)		overy time(s)	
Oxy hydrocarbons	AuNP-functionalized 3D hierarchical	ly About 10/60	[3]
(Methanol)	porous ZnO nanomaterials		
Halogenated	Porous ZnO Nanoplates	103/22	[4]
hydrocarbons			
(Chlorobenzene)			
Aromatic hydrocarbons	Au-functionalized ZnO nanowires	70/27	[5]
(Benzene 10ppm)			
Aliphatic hydrocarbons	TiO ₂	About 180/60	[6]
(Butane 0.4mol/L)			
Terpenes	Nano-structured WO ₃	About 420/180	[7]
(α-Pinene)			
Esters	MOS-based gas sensor array	-	[8]
(Ethyl acetate)			
Aldehydes	Au@ZnO core-shell structure	138/104	[9]
(Formaldehyde 5ppm)			

Table S4. The response/recovery characteristics of other sensors based on metal oxide nanostructures.

Compared the response/recovery times of the sensor materials in the list, the 5% Au@ZnO shows fast response/recovery times.

- [3]. X. Liu, J. Zhang, L. Wang, T. Yang, X. Guo, S. Wu and S. Wang, *Journal of Materials Chemistry*, 2011, **21**, 349-356.
- [4]. Z. Jing and J. Zhan, *Advanced Materials*, 2008, **20**, 4547-4551.
- [5]. L. Wang, S. Wang, M. Xu, X. Hu, H. Zhang, Y. Wang and W. Huang, *Physical Chemistry Chemical Physics*, 2013, **15**, 17179-17186.
- [6]. A. Zotti, S. Zuppolini, M. Giordano, M. Zarrelli, A. Borriello and G. De Luca. 2015 XVIII AISEM Annual Conference.2015,3.
- [7]. S. Paczkowski, T. Sauerwald, A. Weiß, M. Bauer, D. Kohl and S. Schütz. *Bioinspiration, Biomimetics, and Bioreplication*, 2011,**7975**,05.
- [8]. T. Konduru, G. C. Rains and C. Li, *Sensors*, 2015, **15**, 1252-1273.
- [9]. F.-C. Chung, Z. Zhu, P.-Y. Luo, R.-J. Wu and W. Li, *Sensors and Actuators B: Chemical*, 2014, **199**, 314-319.

Materials	Operating	Target	Respons	Response/recover	Ref.
	temperatur	gases	e value	У	
	e	(100ppm)		Time (s)	
	(°C)				
Au-functionalized	300	ethanol	~18	~10/60	[19]
3D hierarchically					-
porous ZnO		methanol	~11.5	~10/60	
nanomaterials,					
Au-supported	300	ethanol	~20	13/~100	[52]
ZnO nanoplates		acetone	~16	-	
Au-deposited	360	methanol	35	4/3	This
ZnO nanoplates					wor
					k

Table S5. Previous reported about sensing performance of Au on ZnO nanoplates.

19. X. Liu, J. Zhang, L. Wang, T. Yang, X. Guo, S. Wu and S. Wang, *Journal of Materials Chemistry*, 2011, **21**, 349-356.

52. J. Zhang, X. Liu, S. Wu, B. Cao and S. Zheng, *Sensors and Actuators B: Chemical*, 2012, **169**, 61-66.

Classification of VOCs	Representative gases	Response at 50 ppm
Oxy hydrocarbons	methanol	20.853
	diethyl ether	21.627
	acetone	10.230
Halogenated hydrocarbons	chlorobenzene	16.698
	trichloro ethylene	4.019
Aromatic hydrocarbons	benzene	11.463
	toluene	6.728
	o-xylene	7.749
Aliphatic hydrocarbons	n-heptane	4.578
	n-decane	10.891
Terpenes	isoprene	25.090
Esters	ethyl acetate	23.543
	butyl acetate	15.775
Aldehydes	formaldehyde	9.579
	hexaldehyde	21.728

Table S6. Response of representative gases of each group.