Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Multifunctional Copper Dimer: Structure, Band Gap Energy, Catalysis, Magnetism, Oxygen Reduction Reaction and Proton Conductivity

Debraj Sarkar,^a Purna Chandra Rao,^a Harshitha Barike Aiyappa,^b Sreekumar Kurungot,^b Sudip Mandal,^c Kothandaraman Ramanujam,^c Sukhendu Mandal^a*

 ^aSchool of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India-695016
^bPhysical and Materials Chemistry Division, CSIR-National Chemical Laboratory (NCL), Pune, 411008, India
^cAcademy of Scientific and Innovative Research (AcSIR), New Delhi, India.
^dDepartment of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India

Parameters	Compound 1		
Empirical formula	$C_{17}H_{15}CuN_{3}O_{10}S_{2}$		
Formula weight	548.98		
Crystal System	Triclinic		
Space Group	<i>P</i> -1 (no. 2)		
a(Å)	9.1350(4)		
b(Å)	11.0789(5)		
c(Å)	11.9804(5)		
α()	92.071(2)		
βŊ	94.009(2)		
γΟ	112.747(2)		
Volume(Å ³)	1112.81(9)		
Ζ	2		
Calculated density, Mg/m ³	1.638		
Crystal size, mm	0.12×0.10 ×0.08		
θ range (deg)	2.428 to 28.378		
F (000)	558		
Absorption coefficient (mm ⁻¹)	1.228		
Reflections collected	19927		
Unique reflections	5544		
Goodness-of-fit	1.067		
Number of parameters	309		
Final R indices [I>2sigma(I)]	$R_1 = 0.0387, wR_2 = 0.1168$		
R indices (all data)	$R_1 = 0.0443, wR_2 = 0.1217$		
Largest diff. peak and hole e Å ⁻³	0.863 and -0.733		

Table S1. Crystallographic parameters for compound 1.

 $[a]R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|; wR_2 = \{ [w(F_0^2 - F_c^2)^2] / [w(F_0^2)^2] \}^{1/2};$

 $w = 1/[\sigma^2(F_0)^2 + (aP)^2 + bP]; P = [\max(F_0^2, 0) + 2(F_c)^2]/3,$

where a = 0.0702 and b = 0.8606 for compound 1.

Donor HAcceptor	D – H (Å)	HA (Å)	DA (Å)	D - HA (°)
O(2)H(2A)O(1)	0.88	2.05	2.906(3)	163
O(2)H(2B)O(5)	0.88	1.96	2.803(3)	158
O(200)H(20A)O(3)	0.85	1.93	2.769(3)	170
O(200)H(20B)O(400)	0.85	1.89	2.622(7)	144
O(200)H(20B)O(500)	0.85	2.58	3.327(7)	147
C(12)H(12)O(200)	0.93	2.48	3.345(4)	154

Table S2. Potential H-bonds in compound 1.

Scheme S1. Proposed mechanism for styrene oxidation.

Scheme S2. Proposed mechanism for cyclohexene oxidation.

Fig. S1 The H-bonded supramolecular structure of compound 1.

Fig. S2 Tauc plots for (a) 1 and (b) Na-salt of PDA.

Fig. S3 (a) The percentage of product conversion after each catalytic cycles. (b) The PXRD pattern of the catalyst after each cycles.

Fig. S4 $1/\chi$ data of compound 1 (solid line represent the Currie-Weiss fitting).

Fig. S5 Cyclic voltammetry recorded in N_2 saturated 0.1 N KOH solution for Cu-dimer/C and Ketjenblack carbon.

Fig. S6 Polarization curves obtained in 0.1 N KOH solution with and without 1M methanol for Pt/C.

Fig. S7 Polarization curves obtained in 0.1 N KOH solution with and without 1M methanol for Cu-dimer/C.

Fig. S8 Arrhenius plot for temperature dependence of conductivity at 100 % RH.

Fig. S9 The simulated and experimental powder X-ray diffraction patterns of compound 1.

Fig. S10 Thermogravimetric analysis plot of compound **1**.

Fig. S11 The PXRD pattern of compound **1** at different temperatures. Note: compound is stable upto 250 °C.

Fig. S12 The PXRD pattern of compound 1 after soaking in water. Note: compound is stable even after 30 days also.

Fig. S13 The Infrared Spectrum of compound 1.