Electronic supplementary information for

A novel ion imprinted SiO_2 microsphere for the specific and rapid extraction and

pre-concentration of ultra-trace methyl mercury

Wenjing Jiang,^{ab} Zhiqiang Chen,^a Xian Cheng,^a Weihua Wu,^a Yongning Wu,^c Liangjun

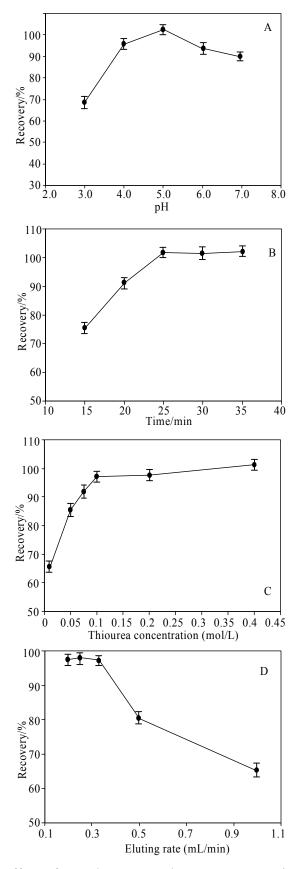
Xu,^a FengFu Fu^{a*}

^aKey Lab of Analysis and Detection for Food Safety of Ministry of Education, Fujian

Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry,

Fuzhou University, Fuzhou, Fujian, 350116, China

^bCollege of Life Sciences, Fujian Agriculture and Forest University, Fuzhou, Fujian, P.


R. China.

^cChina National Center for Food Safety Risk Assessment, Beijing 100022, China.

1. Reagents and Chemicals

Ultrapure water (18.2 M Ω /cm) obtained from a Milli-Q purification device (Millipore, USA) was used in the total experiment. Methacrylic acid (MAA), azodiisobutyronitrile (AIBN), trimethylolpropane trimethacrylate (TMPTM), 1-Pyrrolidinecarbodithioic acid (PDC), methylmercury chloride (CH₃HgCl), ethylmercury chloride (CH₃CH₂HgCl), methacryloxypropyltrimethoxyl silane (γ -MAPS), and thiourea were purchased from J&K Technology (Guangzhou, China). Nitric acid, hydrochloric acid, methanol, and ethanol were supplied by Sinopharm Chemical Reagent (Shanghai, China). Lead nitrate Pb(NO₃)₂, cadmium chloride, mercury chloride (HgCl₂) were obtained from Xilong Chemical (Guangzhou, China). The silica microspheres (2.0 µm) were purchased from Alfa Aesar Company (Tianjin, China).

A Tecnai F30 Field Emission Gun Transmission Electron Microscope (TEM, Philips-FEI, Netherlands) was used for TEM characterization. Fourier transform infrared (FT-IR) spectra were recorded by a Nicolet 6700 infrared spectrometer (Thermo Fisher, USA), and a Esca Lab 250 X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific Company, US) was used for XPS characterization.

Figure S1: A: The effect of sample's pH on the pre-concentration/extraction of MeHg. Other conditions: MeHg IISM 30 mg, water sample 500 mL. B: The effect of stirring time on the pre-concentration/extraction of MeHg. Other conditions: MeHg IISM is

30 mg, water sample 500 mL, pH 5.0. C: The effect of thiourea concentration on the eluting of MeHg adsorbed on MeHg IISM. D: The effect of eluting rate on the eluting efficiency of MeHg, when 2 mL eluent was used to elute MeHg adsorbed on MeHg IISM.

Parameter	Value
RF power	1400 W
Cool gas flow	15 L/min
Auxiliary gas flow	0.90 L/min
Nebulizer gas flow	0.80 L/min
Makeup gas rate	0.20 L/min
Torch	Non-shield torch
Cones	Nickel
Dwell times	10 ms
Resolution	Standard
Oxide(CeO/Ce)	\leqslant 2.0%
Doubly Charged (Ce ²⁺ /Ce)	\leqslant 2.0%
Monitored isotope(m/z)	²⁰¹ Hg, ²⁰² Hg
Nebulizer type	MCN (optimum flow is 50 - 200 μ L/min)

Table S1: Running parameters of ICP-MS

procedure						
Reference	Loading Capacity	Pre-concentration Factor	Sample Consumption	Extraction Time	Reusability	
This work	30 mg/g	250	30mg for 500mL water sample	Adsorbtion 25min; Desorption 15min	50	
Anal. Chim. Acta 575 (2006) 159	170 μmol/g	no provided	20mg for 50mL solution	Adsorbtion 2h; Desorption 2h	20	
J. Chromatogr. A 1391 (2015) 9	no provided	50	200mg for 200mL sea water sample	100min	no provided	
Talanta 144 (2015) 636	20 µg/g	no provided	150mg for 0.2g The reference materials(fish)	no provided	5~10	
Talanta 71 (2007) 699	92.4 mg/g	20	20mg for 50mL solution	Adsorbtion 50min; Desorption 2h	10	

Table 2S: Comparison of performance characteristics of different pre-concentration