Selective Homodimerization of Unprotected Peptides

Using Hybrid Hydroxydimethylsilane Derivatives

Cécile Echalier, Aleksandra Kalistratova, Jérémie Ciccione, Aurélien Lebrun, Baptiste Legrand, Emilia Naydenova, Didier Gagne, Jean-Alain Fehrentz, Jacky Marie, Muriel Amblard, Ahmad Mehdi, Jean Martinez, Gilles Subra

Abbreviations	4
Material and Method	4
1,3-bis(3-aminopropyl)tetramethyl disiloxane hydrochloride 1a	5
1,3-bis(3-aminopropyl)tetramethyl disiloxane trifluoroacetate 1b	8
(3-aminopropyl)dimethylsilanol hydrochloride 2a	.10
(3-aminopropyl)dimethylsilanol trifluoroacetate 2b	.14
Counter-ion effect on NMR signals	.17
DEPT ²⁹ Si sequence optimization	.18
Stability studies of the siloxane bond in different solutions by ¹ H-NMR	.19
Silanol condensation upon lyophilization	.25
N-ter hybrid monomer 4	26
N-ter hybrid dimer 5 (JMV 6187)	.27
C-ter hybrid monomer 6	29
C-ter hybrid dimer 7 (JMV 6186)	.31
Lys³ hybrid monomer 8	.33
Lys³ hybrid dimer 9 (JMV 6185)	.35
Lys³(NH(CH ₂) ₃ Si(CH ₃) ₃) monomer 10 (JMV 6246)	.37
Lys³ monomer 11 (JMV 6244)	40
Lys³(Ac) monomer 12 (JMV 6245)	.43
Monomeric ligand binding assay	.46
Bioactivity of monomeric ligands	.47

Figure	S1. ¹ H NMR spectrum of 1a in DMSO-d ₆ (600 MHz)	.5
Figure	S2. ¹³ C NMR spectrum of 1a in DMSO-d ₆ (151 MHz)	.6
Figure	S3. ²⁹ Si NMR spectrum of 1a in DMSO-d ₆ (119 MHz)	.6
Figure	S4. ¹ H NMR spectrum of 1a in D ₂ O (600 MHz)	.7
Figure	S5. ¹³ C NMR spectrum of 1a in D ₂ O (151 MHz)	.7
Figure	S6. ²⁹ Si NMR spectrum of 1a in D ₂ O (119 MHz)	.8
Figure	S7. ¹ H NMR spectrum of 1b in DMSO-d ₆ (600 MHz)	.9
Figure	S8. ¹³ C NMR spectrum of 1b in DMSO-d ₆ (151 MHz)	.9
Figure	S9. ²⁹ Si NMR spectrum of 1b in DMSO-d ₆ (119 MHz)	10
Figure	S10. ¹ H NMR spectrum of 1a/2a in DMSO-d ₆ (600 MHz)	11
Figure	S11. ¹³ C NMR spectrum of 1a/2a in DMSO-d ₆ (151 MHz)	11
Figure	S12. ²⁹ Si NMR spectrum of 1a/2a in DMSO-d ₆ (119 MHz)	12
Figure	S13. ¹ H NMR spectrum of 2a in D ₂ O (600 MHz)	13
Figure	S14. ¹³ C NMR spectrum of 2a in D ₂ O (151 MHz)	13
Figure	S15. ²⁹ Si NMR spectrum of 2a in D ₂ O (119 MHz)	14
Figure	S16. ¹ H NMR spectrum of 1b/2b in DMSO-d ₆ (600 MHz)	14
Figure	S17. ¹³ C NMR spectrum of 1b/2b in DMSO-d ₆ (151 MHz)	15
Figure	S18 . ²⁹ Si NMR spectrum of 1b/2b in DMSO-d ₆ (119 MHz)	15
Figure	S19. ¹ H NMR spectrum of 1b/2b in D ₂ O (600 MHz)	16
Figure	S20. ¹³ C NMR spectrum of 1b/2b in D ₂ O (151 MHz)	16
Figure	S21. ²⁹ Si NMR spectrum of 1b/2b in D ₂ O (119 MHz)	16
Figure	S22. From hydrochloride to trifluoroacetate salts. Top: ¹ H NMR spectrum of 1a/2a	
mixture	in D ₂ O. Bottom: ¹ H NMR spectrum of 1b/2b mixture in D ₂ O	17
Figure	S23. ¹ H flip angle optimization	18
Figure	S24. ¹ H NMR spectra of 1a in DMSO-d ₆	19
Figure	S25. ¹ H NMR spectra of 1a at pH 4	20
Figure	S26. 1a hydrolysis at pH 4 based on ¹ H NMR kinetic studies	20
Figure	S27. ¹ H NMR spectra of 1a at pH 72	21
Figure	S28. 1a hydrolysis at pH 7 based on ¹ H NMR kinetic studies	21
Figure	S29. ¹ H NMR spectra of 1a at pH 7.4	22
Figure	S30. 1a hydrolysis at pH 7.4 based on ¹ H NMR kinetic studies	22
Figure	S31. ¹ H NMR spectra of 1a at pH 10. Signals from the CH ₂ group in gamma position	1
to silico	n2	23
Figure	S32 . 1a hydrolysis at pH 10 based on ¹ H NMR kinetic studies	24
Figure	S33 . ¹ H NMR spectrum of 1a in D ₂ O 0.1% TFA at t = 0	24
Figure	S34. From monomer to dimer upon lyophilization.	25
Figure	S35. LC/MS spectrum of 4	26
Figure	S36. ¹ H NMR spectrum of 5 in DMSO-d ₆ (400 MHz)	27
Figure	S37. ¹³ C NMR spectrum of 5 in DMSO-d ₆ (101 MHz)2	28
Figure	S38. HR-MS analysis of 5	29
Figure	S39. LC/MS spectrum of 6	30
Figure	S40. ¹ H NMR spectrum of 7 in DMSO-d ₆ (400 MHz)	31
Figure	S41. ¹³ C NMR spectrum of 7 in DMSO-d ₆ (101 MHz)	32
Figure	S42. HR-MS analysis of 7	33
Figure	S43. LC/MS spectrum of 8	34
Figure	S44. ¹ H NMR spectrum of 9 in DMSO-d ₆ (400 MHz)	35
Figure	S45. ¹³ C NMR spectrum of 9 in DMSO-d ₆ (101 MHz)	36
Figure	S46. HR-MS analysis of 9	37

Figure S47. LC/MS spectrum of 10	38
Figure S48. HR-MS analysis of 10	
Figure S49. LC-MS spectrum of 11	41
Figure S50. HR-MS analysis of 11	42
Figure S51. LC-MS spectrum of 12	44
Figure S52. HR-MS spectrum of 12	45
Figure S53. Binding of compounds 10, 11 and 12	46
Figure S54. Signaling property of compounds 10, 11 and 12	47

Abbreviations

ACN, acetonitrile; Alloc, allyloxycarbonyl; Boc, t-butyloxycarbonyl; CM, ChemMatrix; DCM, polarization dichloromethane: DEPT. distortionless enhancement by transfer: DIEA. diisopropylethylamine; DMF, N-N'-dimethylformamide; DMSO, dimethylsylfoxide; DPBS, Dulbelcco's phosphate buffered saline; ESI-MS, electrospray ionization mass spectrometry; Fmoc, fluorenylmethoxycarbonyl; GHRP-6, growth hormone releasing hexapeptide; HBTU, N,N,N',N'tetramethyl-O-(1H-benzotriazol-1-yl)uronium HFIP, hexafluorophosphate; hexafluoroisopropanol; HTRF, homogenous time resolved fluorescence; ICPDMCS, 3isocyanatopropyldimethylchlorosilane; IP1, inositol monophosphate; LC/MS, tandem liquid chromatography/ mass spectrometry; MW, micro-wave; NMP, N-methyl-2-pyrrolidone; NMR, nuclear magnetic resonance; pip, piperidine; PS, polystyrene; RP-HPLC, reversed phase high performance liquid chromatography; RT, room temperature; SPPS, solid phase peptide synthesis; TFA, trifluoroacetic acid; THF, tetrahydrofurane; TIS, triisopropylsilane; Trt, trityl; UV, ultra-violet. Other abbreviations used were those recommended by the IUPAC-IUB Commission (Eur. J. Biochem. 1984, 138, 9-37).

Material and Method

All solvents and reagents were used as supplied. Solvents used for LC/MS were of HPLC grade. Dichloromethane (DCM); N,N-dimethylformamide (DMF) were obtained from Carlo Erba. Fmoc amino acid derivatives, [benzotriazol-1-yloxy(dimethylamino)methylidene]- dimethylazanium hexafluorophosphate (HBTU), Fmoc-Rink amide CM resin, 2-chloro chlorotrityl PS resin, were purchased from Iris Biotech (Marktredwitz, Germany). Diisopropylcarbodiimide (DIC), diisopropylethylamine (DIEA), trifluoroacetic acid (TFA) were obtained from Sigma-Aldrich (St. Louis, MO, USA). Hexafluoroisopropanol (HFIP) and triisopropylsilane (TIS) were obtained from Alfa Aeser and Acros respectively. NMR solvents were obtained from Euriso-top.

Samples for LC/MS analyses were prepared in acetonitrile/water (50:50, v/v) mixture, containing 0.1% TFA. The LC/MS system consisted of a Waters Alliance 2695 HPLC, coupled to a Water Micromass ZQ spectrometer (electrospray ionization mode, ESI+). All the analyses were carried out using a Phenomenex Onyx, 25 x 4.6 mm reversed-phase column. A flow rate of 3 mL/min and a gradient of (0-100)% B over 2.5 min were used. Eluent A: water/0.1% HCO2H; eluent B: acetonitrile/0.1% HCO2H. UV detection was performed at 214 nm. Electrospray mass spectra were acquired at a solvent flow rate of 200 μ L/min. Nitrogen was used for both the nebulizing and drying gas. The data were obtained in a scan mode ranging from 100 to 1000 m/z or 250 to 1500 m/z to in 0.7 sec intervals.

High Resolution Mass Spectrometric analyses were performed with a Synapt G2-S (Waters) mass spectrometer fitted with an Electrospray Ionisation source. All measurements were performed in the positive ion mode. Capillary voltage: 1000 V; cone voltage: 30 V; source temperature: $120^{\circ}C$; desolvation temperature: $250^{\circ}C$. The data were obtained in a scan mode ranging from 100 to 1500 m/z.

1,3-bis(3-aminopropyl)tetramethyl disiloxane hydrochloride 1a

Cl[⊕] ⊕_{NH3} Cl[⊕] ⊕_{NH3}

Commercially available 1,3-bis(3-aminopropyl)tetramethyl disiloxane (500 μ L, 1.8 mmol) was poured into 1 M hydrogen chloride ether solution (7.2 mL, 7.2 mmol, 4 eq) cooled in an ice bath. 1,3-bis(3-aminopropyl)tetramethyl disiloxane hydrochloride precipitated immediately. Diethyl ether was removed under reduced pressure to yield compound **1a** as a white powder (100%).

Figure S1.¹H NMR spectrum of 1a in DMSO-d₆ (600 MHz)

Figure S3. ²⁹Si NMR spectrum of **1a** in DMSO-d₆ (119 MHz)

Figure S4. ¹H NMR spectrum of **1a** in D₂O (600 MHz)

Figure S5. ¹³C NMR spectrum of **1a** in D₂O (151 MHz)

Figure S6. ²⁹Si NMR spectrum of **1a** in D₂O (119 MHz)

1,3-bis(3-aminopropyl)tetramethyl disiloxane trifluoroacetate 1b

Trifluoroacetic acid (220 μ L, 2.89 mmol, 4 eq) was added on 1,3-bis(3-aminopropyl)tetramethyl disiloxane (200 μ L, 0.722 mmol) in diethyl ether (2 mL) on an ice bath. Diethyl ether and TFA excess were removed under reduced pressure to yield compound **1b** as a colorless oil (100%).

Figure S7. ¹H NMR spectrum of **1b** in DMSO-d₆ (600 MHz)

Figure S8. ¹³*C* NMR spectrum of **1b** in DMSO-d₆ (151 MHz)

Figure S9. ²⁹Si NMR spectrum of **1b** in DMSO-d₆ (119 MHz)

(3-aminopropyl)dimethylsilanol hydrochloride 2a

Cl[⊕] ⊕NH₃

OH

On the one hand, DCl 35% in D₂O (6.00 μ L) were added to **1a** (20 mg) in DMSO-d₆ (600 μ L) to trigger **1a** hydrolysis into **2a**. The **1a/2a** mixture in DMSO-d₆ was analyzed by NMR.

Figure S10. ¹H NMR spectrum of **1a/2a** in DMSO-d₆ (600 MHz)

Figure S11. ¹³C NMR spectrum of **1a/2a** in DMSO-d₆ (151 MHz)

On the other hand, 1,3-bis(3-aminopropyl)tetramethyl disiloxane hydrochloride **1a** (20 mg) was solubilized in D_2O (600 µL) and the solution was left aside for 8 weeks to allow **1a** hydrolysis into **2a**. **2a** solution in D_2O was analyzed by NMR. Traces of **1a** are still visible on NMR spectra.

Figure S15. ²⁹Si NMR spectrum of 2a in D₂O (119 MHz)

(3-aminopropyl)dimethylsilanol trifluoroacetate 2b

On the one hand, 3-bis(3-aminopropyl)tetramethyl disiloxane trifluoroacetate **1b** (20 mg) was dissolved in DMSO-d₆ (600 μ L) and the solution was left aside for 5 weeks to allow **1b** hydrolysis into **2b**. Then the mixture **1b/2b** in DMSO-d₆ was analyzed by NMR.

Figure S16. ¹H NMR spectrum of **1b/2b** in DMSO-d₆ (600 MHz)

Figure S18.²⁹Si NMR spectrum of 1b/2b in DMSO-d₆ (119 MHz)

On the other hand, 3-bis(3-aminopropyl)tetramethyl disiloxane trifluoroacetate **1b** (20 mg) was dissolved in D₂O (600 μ L). **1b** hydrolysis into **2b** occurred. The mixture **1b/2b** in D₂O was analyzed by NMR.

Figure S19. ¹H NMR spectrum of **1b/2b** in D₂O (600 MHz)

Figure S20. ¹³C NMR spectrum of **1b/2b** in D₂O (151 MHz)

Figure S21. ²⁹Si NMR spectrum of 1b/2b in D₂O (119 MHz)

Counter-ion effect on NMR signals

Figure S22. From hydrochloride to trifluoroacetate salts. Top: ¹H NMR spectrum of **1***a*/**2***a* mixture in D_2O . Bottom: ¹H NMR spectrum of **1***b*/**2***b* mixture in D_2O .

DEPT 29Si sequence optimization

In order to decrease the experiment time, we used a DEPT ²⁹Si sequence, with a relaxation delay of 2 seconds, to take advantage of the polarization transfer from hydrogens of methylene in the alpha position to the silicon atom. An optimization was made on this sequence, where the last ¹H flip angle was moved from 17° to 45° (Figure S23). The results showed a factor of 2 gain in favor of the angle of 24° compared to the standard DEPT of 45°.

Figure S23. ¹*H* flip angle optimization. 1*H* flip angle was moved from 17° to 45°: blue 45°, green 35°, purple 24°, red 21°, orange 19.5°, black 17°

Stability studies of the siloxane bond in different solutions by ¹H-NMR

t = 0 min corresponds to the dissolution of 1,3-bis(3-aminopropyl)tetramethyl disiloxane hydrochloride **1a** (20 mg) in DMSO-d₆ or in D₂O-containing buffer that yields a solution at the desired pH. pH were adjusted in advance with Dulbecco's phosphate buffered saline, HCl or NaOH aqueous solutions on blank samples. Dimer percent was reported as a function of time based on the integration of ¹H signals from the -CH₂Si group of monomer and dimer.

Figure S24. ¹H NMR spectra of 1a in DMSO-d₆

Figure S25.¹H NMR spectra of 1a at pH 4

Figure S26. 1a hydrolysis at pH 4 based on ¹H NMR kinetic studies

Figure S28. 1a hydrolysis at pH 7 based on ¹H NMR kinetic studies

Figure S30. 1a hydrolysis at pH 7.4 based on ¹H NMR kinetic studies

We focused our attention on ¹H signals from -CH₂Si and CH₃Si because they are the farthest signals from the peptide sequence in hybrid peptide displaying the dimethylpropylsiloxane dimerization arm. As a consequence, very few differences in chemical shifts and signal shapes are expected when changing the peptide sequence. Thus, NMR studies on the 1,3-bis(3-aminopropyl)tetramethyl disiloxane model can be generalized to hybrid peptides. In addition, these signals appear in a chemical shift area completely different from peptide signals which makes them easily identifiable and integrable. However, the methylene group in gamma position to the silicon is also a proble for the determination of monomer/dimer ratio (figure S31)

0 min	M	
10 min	m	
20 min	m	
30 min	m	
40 min	m	
60 min	MM	
80 min	M	
100 min	Mh	
190 min	M	
420 min	M	
2.9	2.8 2.7	io i [ppm]

Figure S31. ¹H NMR spectra of 1a at pH 10. Signals from the CH₂ group in gamma position to silicon

Figure S32. 1a hydrolysis at pH 10 based on ¹H NMR kinetic studies

Figure S33. ¹H NMR spectrum of **1a** in D_2O 0.1% TFA at t = 0. Hydrolysis occurred immediately. Signals correspond to monomer **2a**.

Silanol condensation upon lyophilization

Figure S34. From monomer to dimer upon lyophilization. Top : ¹H NMR spectrum of **2a** in D₂O/0.1% TFA before lyophilization; bottom : ¹H NMR spectrum of the same sample after freeze-drying

Figure S35. LC/MS spectrum of 4

N-ter hybrid dimer 5 (JMV 6187)

Figure S36. ¹H NMR spectrum of 5 in DMSO-d₆ (400 MHz)

Figure S37. ¹³C NMR spectrum of 5 in DMSO-d₆ (101 MHz)

Figure S38. HR-MS analysis of 5

C-ter hybrid monomer 6

Figure S39. LC/MS spectrum of 6

C-ter hybrid dimer 7 (JMV 6186)

igure S40. ¹H NMR spectrum of 7 in DMSO-d₆ (400 MHz)

Figure S42. HR-MS analysis of 7

Lys³ hybrid monomer 8

Figure S43. LC/MS spectrum of 8

Lys³ hybrid dimer 9 (JMV 6185)

Figure S44. ¹H NMR spectrum of **9** in DMSO-d₆ (400 MHz)

Figure S45. ¹³C NMR spectrum of 9 in DMSO-d₆ (101 MHz)

Figure S46. HR-MS analysis of 9

Lys³(NH(CH₂)₃Si(CH₃)₃) monomer 10 (JMV 6246)

Figure S47. LC/MS spectrum of 10

Figure S48. HR-MS analysis of 10

Lys³ monomer 11 (JMV 6244)

Figure S49. LC-MS spectrum of 11

Figure S50. HR-MS analysis of 11

Lys³(Ac) monomer 12 (JMV 6245)

Figure S51. LC-MS spectrum of 12

Figure S52. HR-MS spectrum of 12

Figure S53. Binding of compounds **10**, **11** and **12**, monomeric analogues of dimer **9**, to GHS-R1a. Ligands affinities were determined by HTRF-based competition binding assay performed on intact HEK293T cells as described in Materials and Methods. Results are from one representative experiment of two, each performed in triplicate.

Figure S54. Signaling property of compounds **10**, **11** and **12**. Efficacy of ligands to stimulate IP1 production was measured on HEK293T cells expressing the GHS-R1a as described in Materials and Methods. Results are one representative experiment of two, each performed in triplicate.

Bioactivity of monomeric ligands