Electronic Supplementary Information

Impact of structure and homo-coupling of the central donor unit of small molecule organic semiconductors on solar cell performance

Pieter Verstappen,^a Ilaria Cardinaletti,^b Tim Vangerven,^b Wouter Vanormelingen,^a Frederik Verstraeten,^a Laurence Lutsen,^{a,c} Dirk Vanderzande,^{a,c} Jean Manca,^d and Wouter Maes^{*a,c}

(a) Design & Synthesis of Organic Semiconductors (DSOS), Institute for Materials Research (IMO-IMOMEC), Hasselt University, Universitaire Campus, Agoralaan - Building D, B-3590 Diepenbeek, Belgium

(b) Materials Physics Division, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Universitaire Campus, Wetenschapspark 1, B-3590 Diepenbeek, Belgium

(c) IMEC, IMOMEC, Universitaire Campus, Wetenschapspark 1, B-3590 Diepenbeek, Belgium

(d) X-LaB, Hasselt University, Universitaire Campus, Agoralaan - Building D, B-3590 Diepenbeek, Belgium

Corresponding author: Tel.: +32 11268312; E-mail: wouter.maes@uhasselt.be

Table of contents

1. ¹ H and ¹³ C NMR spectra	S 2
2. MALDI-TOF mass spectra	S5
3. Cyclic voltammograms	S 8
4. Solar cell optimization tables	S 9
5. EQE spectra	S 10
6. FET mobility measurements	S 11
7. Purification of DTP(FBTTh ₂) ₂ via prep-SEC	S12
8. UV-Vis absorption spectra for the impure and purified DTP(FBTTh ₂) ₂ samples	s S12
9. FTPS fitting parameters	S 13

1. ¹H and ¹³C NMR spectra

CPDT(FBTTh2)2 (in CDCl3)

DTP(FBTTh₂)₂-pure (in CS₂:CDCl₃ 3:1)

2. MALDI-TOF mass spectra

CPDT(FBTTh₂)₂

2000 2200 m/z (Da)

DTP(FBTTh₂)₂

2000 2200 m/z (Da)

DTP(FBTTh₂)₂-pure

2200 2400 m/z (Da)

2000 2200 m/z (Da)

TT(FBTTh₂)₂

2000 2200 m/z (Da)

3. Cyclic voltammograms

Figure S1: Cyclic voltammograms of the three small molecules in film (**CPDT**(**FBTTh**₂)₂: $E_{ox}^{onset} = 0.47 \text{ V}, E_{red}^{onset} = -1.56 \text{ V}; \text{DTP}(\text{FBTTh}_2)_2$: $E_{ox}^{onset} = 0.38 \text{ V}, E_{red}^{onset} = -1.54 \text{ V}; \text{TT}(\text{FBTTh}_2)_2$: $E_{ox}^{onset} = 0.67 \text{ V}, E_{red}^{onset} = -1.58 \text{ V}$).

4. Solar cell optimization tables

Acceptor	Ratio	Solvent ^a	$J_{\rm sc}$ (mA/cm ²)	V _{oc} (V)	FF (%)	PCE ^b (%)
PC ₆₁ BM	1:2	CF	4.79	0.81	30	1.17 (1.22)
PC ₆₁ BM	1:2	CF	4.88	0.86	30	1.28 (1.33) ^c
PC ₆₁ BM	1:3	CF	5.12	0.79	32	1.29 (1.33)
PC ₆₁ BM	1:3	CF	5.47	0.84	32	$1.40(1.46)^c$
PC ₇₁ BM	1:2	СВ	8.44	0.85	38	2.77 (3.00)
PC ₇₁ BM	1:3	СВ	8.39	0.85	40	2.83 (3.10)
PC ₇₁ BM	1:2	oDCB	7.74	0.83	41	2.61 (2.74)
PC ₇₁ BM	1:3	oDCB	7.63	0.82	39	2.46 (2.53)
PC ₇₁ BM	1:3	CB + 0.1% DIO	8.02	0.83	36	2.38 (2.58)
PC ₇₁ BM	1:3	CB + 0.3% DIO	7.90	0.83	37	2.42 (2.52)
PC ₇₁ BM	1:3	CB + 0.1% CN	8.40	0.84	39	2.72 (2.93)
PC71BM	1:3	CB + 0.3% CN	8.31	0.83	38	2.64 (2.70)

Table S1: Optimization of the solar cell devices based on CPDT(FBTTh₂)₂.

^{*a*} CF = chloroform, CB = chlorobenzene, oDCB = *ortho*-dichlorobenzene, DIO = 1,8-diiodooctane, CN = 1chloronaphthalene. ^{*b*} Averaged over at least 3 devices. The best device performance is shown in parentheses. ^{*c*} Post-annealed at 100 °C.

Table S2: Of	otimization	of the	solar o	cell devices	s based or	n DTP(I	EBTTh ₂) ₂
--------------	-------------	--------	---------	--------------	------------	---------	-----------------------------------

Acceptor	Ratio	Solvent ^a	$J_{\rm sc}$ (mA/cm ²)	V _{oc} (V)	FF (%)	PCE ^b (%)
PC ₆₁ BM	1:2	CF	3.96	0.45	42	0.75 (0.80)
PC ₆₁ BM	1:3	CF	2.72	0.43	45	0.52 (0.53)
PC ₇₁ BM	1:1	СВ	5.52	0.59	33	1.08 (1.11)
PC ₇₁ BM	1:2	CB	6.75	0.50	40	1.34 (1.37)

^{*a*} CF = chloroform, CB = chlorobenzene. ^{*b*} Averaged over at least 3 devices. The best device performance is shown in parentheses.

Acceptor	Ratio	Solvent ^a	$J_{\rm sc}$ (mA/cm ²)	$V_{ m oc}$ (V)	FF (%)	PCE ^b (%)
PC ₆₁ BM	1:1	TCE^{c}	4.36	0.80	36	1.26 (1.32)
PC ₆₁ BM	1:2	TCE^{c}	5.28	0.71	38	1.42 (1.74)
PC ₆₁ BM	1:2	\mathbf{CB}^d	6.25	0.77	33	1.60 (1.68)
PC ₆₁ BM	1:3	\mathbf{CB}^d	4.45	0.76	34	1.14 (1.37)
PC ₆₁ BM	1:2	$CB + 0.1\% CN^d$	5.35	0.76	32	1.28 (1.60)
PC ₆₁ BM	1:2	$CB + 0.3\% CN^d$	5.53	0.69	31	1.16 (1.56)
PC ₇₁ BM	1:2	\mathbf{CB}^d	8.75	0.72	32	1.97 (2.19)
PC ₇₁ BM	1:2	$\mathrm{CB}+0.2\%\ \mathrm{DIO}^{d}$	9.13	0.79	36	2.63 (2.96)
PC ₇₁ BM	1:2	$oDCB^d$	8.11	0.65	34	1.79 (2.22)

Table S3: Optimization of the solar cell devices based on TT(FBTTh₂)₂.

^{*a*} TCE = 1,1,2,2-tetrachloroethane, CB = chlorobenzene, oDCB = *ortho*-dichlorobenzene, CN = 1chloronaphthalene, DIO = 1,8-diiodooctane. ^{*b*} Averaged over at least 3 devices. The best device performance is shown in parentheses. ^{*c*} Processed at 85 °C. ^{*d*} Processed at 95 °C.

5. EQE spectra

Figure S2: EQE spectra of the optimal devices prepared from the three small molecules.

6. FET mobility measurements

Figure S3: FET transfer characteristics for **CPDT(FBTTh**₂)₂ (a), **DTP(FBTTh**₂)₂-**pure** (b), and **TT(FBTTh**₂)₂ (c). The lines used to fit the mobilities in the saturation regime ($V_{DS} = -40$ V) are shown in red.

7. Purification of DTP(FBTTh₂)₂ via prep-SEC

Figure S4: Prep-SEC trace for the purification of **DTP(FBTTh₂)₂. DTP(FBTTh₂)₂-homo** can be separated as the first collection.

8. UV-Vis absorption spectra for the impure and purified DTP(FBTTh₂)₂ samples

Figure S5: UV-Vis absorption spectra (normalized) for DTP(FBTTh₂)₂, DTP(FBTTh₂)₂-pure and DTP(FBTTh₂)₂-homo in CHCl₃.

9. FTPS fitting parameters

Blend	$E_{\rm CT}$ (eV)	λ (eV)	f (eV ²)	V _{oc} (V)	$E_{ m CT}$ - $qV_{ m oc}$ (eV)
CPDT(FBTTh ₂) ₂ :PC ₇₁ BM	1.43	0.25	4.3E-1	0.85	0.58
TT(FBTTh ₂) ₂ :PC ₇₁ BM	1.33	0.24	1.6E-1	0.79	0.54
DTP(FBTTh ₂) ₂ :PC ₇₁ BM	1.20	0.30	1.5E-1	0.50	0.70
DTP(FBTTh₂)₂-pure :PC ₇₁ BM	1.22	0.25	2.1E-1	0.67	0.55

Table S4: Fitting parameters for the obtained FTPS signals according to equation 1.