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Figure S1. 1H-NMR spectrum (400 MHz, 298 K, *CDCl3) of the compound 2a. 
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Figure S2: 13C-NMR spectrum (100 MHz, 298 K, *CDCl3) of the compound 2a. 
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Figure S3: 1H-NMR spectrum (400 MHz, 298 K, *CDCl3) of the compound 2b. 
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Figure S4: 13C-NMR spectrum (100 MHz, 298 K, CDCl3) of the compound 2b. 
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Figure S5: 1H-NMR spectrum (400 MHz, 298 K, *CDCl3) of the compound 4a. 
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Figure S6: 13C-NMR spectrum (100 MHz, 298 K, CDCl3) of the compound 4a. 
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Figure S7: 1H-NMR spectrum (400 MHz, 298 K, *CDCl3) of the compound 5a. 
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Figure S8: 13C-NMR spectrum (100 MHz, 298 K, CDCl3) of the compound 5a. 
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Figure S9: 1H-NMR spectrum (400 MHz, 298 K, *CDCl3) of the compound 4b. 
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Figure S10: 13C-NMR spectrum (100 MHz, 298 K, *CDCl3) of the compound 4b. 
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   Figure S11: 1H-NMR spectrum (400 MHz, 298 K, *CDCl3) of the compound 4c.  
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Figure S12: 13C-NMR spectrum (100 MHz, 298 K, CDCl3) of the compound 4c. 
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Figure S13: 1H-NMR spectrum (400 MHz, 298 K, *CDCl3) of the compound 4d.  
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Figure S14: 13C-NMR spectrum (100 MHz, 298 K, CDCl3) for the compound 4d. 
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Figure S15: 1H-NMR spectrum (400 MHz, 298 K, *CDCl3) of the compound 4e.  
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Figure S16: 13C-NMR spectrum (100 MHz, 298 K, CDCl3) for the compound 4e. 
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Figure S17: 1H-NMR spectrum (400 MHz, 298 K, *CDCl3) of the compound 5b.  
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Figure S18: 13C-NMR spectrum (100 MHz, 298 K, CDCl3) of the compound 5b. 
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Figure S19: FT-IR spectrum of the compound 2a. 

 

 
Figure S20: FT-IR spectrum of the compound 2b. 
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Figure S21: FT-IR spectrum of the compound 4a. 

 

 
Figure S22: FT-IR spectrum of the compound 5a. 
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Figure S23: FT-IR spectrum of the compound 4b. 
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Figure S24: FT-IR spectrum of the compound 4c. 
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Figure S25: FT-IR spectrum of the compound 4d. 
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Figure S26: FT-IR spectrum of the compound 4e. 
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Figure S27: FT-IR spectrum of the compound 5b. 

 

 
Figure S28: Mass-spectrum of the compound 2b. 
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Figure S29: Mass-spectrum of the compound 4a. 

 
Figure S30: High resolution Mass-spectrum of the compound 5a. 
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Figure S31: Mass-spectrum of the compound 4b. 

 

 
Figure S32: High resolution Mass-spectrum of the compound 4c. 
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Figure S33: High resolution Mass-spectrum of the compound 4d. 

 
 

 
Figure S34: High resolution Mass-spectrum of the compound 4e. 
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Figure S35: Mass-spectrum of the compound 5b. 

 
 

Figure S36: HRMS result of the compound 5a. 
 



S21 
 

 
Figure S37: HRMS result of the compound 4c. 

 
Figure S38: HRMS result of the compound 4d. 
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Figure S39: HRMS result of the compound 4e. 

 

X-ray crystallography 

Table S1: Summary of crystal data for 4a and 4b 
Table S1 Summary of crystal data for 4a and 4b.a,b 

Parameter 4a 4b 
Empirical formula C39 H42 O3 C39 H39 Br3O3, CHCl3, ca 

6(CH4O) 
Formula weight [g mol-1] 558.76 1107.05 

Crystal system trigonal trigonal 
Space group R-3 R-3 

A  [Å] 19.3942(14) 15.4391(12) 
B  [Å] 19.3942(14) 15.4391(12) 
C  [Å] 16.5448(6) 31.782 (4)  
α  [°] 90.0000 90.0000 
β  [°] 90.0000 90.0000 
γ  [°] 120.0000 120.0000 

Volume [Å3] 5389.4(6) 6560.8(13) 
Z 6 6 

Density, calcd [g m-3] 1.033 1.681 
Temperature [K] 123 140 

Unique reflns 2193 1888 
Obsd reflns 1984 1293 
Parameters 127 182 

Rint 0.0399 0.076 
R[I>2σ(I)]a 0.0647 0.072 

wR[I>2σ(I)]b 0.1455 0.138 
GOF on F2 1.154 1.119 

 
a Conventional R on Fhkl: Σ||Fo| – |Fc||/σ|Fo|. b Weighted R on |Fhkl|2: Σ[w(Fo

2 – Fc
2)2]/Σ[w(Fo

2)2]1/2 
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Crystal structure analysis of the tris-benzofuran calixarene, compound 4a:1–4        
Crystal data: C39H42O3. M = 558.76. Trigonal, space group R-3 (no. 148; hexagonal axes), a = b = 
19.3942(14), c = 16.5448(6) Å, α = β = 90, γ = 120 °, V = 5389.4(6) Å3. Z = 6, Dc = 1.033 g cm-3, F(000) 
= 3408, T = 123(1) K, µ(Cu-Kα) = 4.96 cm-1, λ(Mo-Kα) = 1.5418 Å. 
            A colorless prism crystal of C39H42O3 having approximate dimensions of 0.350 x 0.250 x 0.200 
mm was mounted on a glass fiber. All intensity measurements were made on a Rigaku R-AXIS RAPID 
diffractometer using graphite monochromated Cu-Kα radiation. The data were collected at a temperature 
of -150 + 1°C to a maximum 2θ value of 136.4°. Of the 20857 reflections collected, 2193 were unique 
(Rint = 0.0399) and 1984 were ‘observed’; equivalent reflections were merged. The linear absorption 
coefficient, µ, for Cu-Kα radiation is 4.956 cm-1. An empirical absorption correction was applied which 
resulted in transmission factors ranging from 0.641 to 0.906. The data were corrected for Lorentz and 
polarization effects. The structure was solved by direct methods1 and expanded using Fourier techniques. 
The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding 
model. The final cycle of full-matrix least-squares refinement on F2 was based on all 2193 reflections and 
127 variable parameters and converged with R1 = 0.071 and wR2 = 0.146; for the observed data, R1 = 
0.065. The goodness of fit was 1.15. The maximum and minimum peaks on the final difference Fourier 
map corresponded to 0.36 and -0.33 eÅ-3, respectively. 
            Neutral atom scattering factors were taken from International Tables for Crystallography (IT), 
Vol. C, Table 6.1.1.4.2 All calculations were performed using the CrystalStructure3 crystallographic 
software package except for refinement, which was performed using SHELXL2013.4 
 Crystal structure analysis of a tris-benzofuran calixarene/CHCl3/methanol complex, compound 
4b:5–8        
Crystal data:  C39H39Br3O3, CHCl3, ca 6(CH4O).  M = 1107.1.  Trigonal, space group R-3 (no. 148; 
hexagonal axes), a = b = 15.4391(12), c = 31.782(4) Å, α = β = 90, γ = 120 °, V = 6560.8(13) Å3. Z = 6, 
Dc = 1.681 g cm-3, F(000) = 3408, T = 140(1) K, µ(Mo-Kα) = 30.1 cm-1, λ(Mo-Kα) = 0.71073 Å.  
Crystals are colorless, cubic blocks.  One, ca 0.43 x 0.37 x 0.25 mm, was mounted in oil on a glass fiber 
and fixed in the cold nitrogen stream on an Oxford Diffraction Xcalibur-3 CCD diffractometer equipped 
with Mo-Kα radiation and graphite monochromator.  Intensity data were measured by thin-slice ω- and 
φ-scans. Total no. of reflections recorded, to θmax = 22.5°, was 13024 of which 1888 were unique (Rint = 
0.076); 1293 were 'observed' with I > 2σI.  
Data were processed using the CrysAlis-CCD and -RED (1) programs. The structure was determined by 
the direct methods routines in the SHELXS program (2A) and refined by full-matrix least-squares 
methods, on F2's, in SHELXL (2B).  The analysis shows the calixarene molecule lying around a 
threefold symmetry axis with, on one side, a CHCl3 solvent molecule (also on the symmetry axis) and, on 
the other side, a complex ring structure, presumably of a disordered array of methanol molecules; in this 
region, 50 atoms have been refined as isotropic carbon atoms, mostly with site occupancies of 0.5, about a 
point of -3 symmetry. In the calixarene and chloroform molecules, the non-hydrogen atoms were refined 
with anisotropic thermal parameters; hydrogen atoms were included in idealized positions and their Uiso 
values were set to ride on the Ueq values of the parent carbon atoms.  At the conclusion of the 
refinement, wR2 = 0.149 and R1 = 0.114 (2B) for all 1888 reflections weighted w = [σ2(Fo

2) + (0.0368P)2 
+ 104.34P]-1 with P = (Fo

2 + 2Fc
2)/3; for the 'observed' data only, R1 = 0.072. 

In the final difference map, the highest peak (ca 0.37 eÅ-3) was close to Br(13). 
Scattering factors for neutral atoms were taken from reference.7  Computer programs used in this 
analysis have been noted above, and were run through WinGX (4) on a Dell Optiplex 755 PC at the 
University of East Anglia.  
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General description for the DFT computational study:9,10        
 Density functional theory (DFT) computational studies were carried out to determine the 
geometry-optimized energies of compounds 4a-e and 5a-b. The starting structures were generated with 
the initial geometries based upon the X-ray structures of 4a and 4b and from the presumed structures of 
4c–4d (derived from cone-4a and cone-4b) and 5a–b using SpartanPro'10 with the MMFF94 method.9 
The individual geometry-optimized structures of these molecules were first conducted in the gas phase 
and then in solvent (chloroform) with the B3LYP/6-31G(d) basis set using Gaussian-09.10 The results are 
summarized in Tables S2 and S3 for both cone and saddle conformations for compounds 4a–e, 5a–b 

(Figures S36 to S42). The results presented in Table S2 show that 4a–e, 5a–b were energetically 
more-favoured in solvent CHCl3 than in the gas phase. The results presented in Table S3 of the 
synthesized calix[3]benzofurans and their derivatives, 4a–e, suggest that the saddle conformers are more 
stable than the cone isomers. The results presented in Tables S2 & S3 show that among the 
calix[3]benzofurans, 4b is the energetically most-favoured (in both the solvent and gas-phase) and the 
order is as follows: 4b>4e>4d>4c >4a>5b >5a in both the solvent and gas phase. So by introducing the 
different groups at the furan moieties, the derivatives become energetically more favored over the 
corresponding calix[3]benzofuran according to the increasing size of groups (i.e. COMe > CH2OH > 
CHO) except for 4b. In the case of 4b, there may be two factors influencing the stability: bromine is 
electronegative in nature and has greater electron-density due to multiple lone-pairs of electrons.  
The DFT optimized B3LYP/6-31G(d) energies of these two conformers imply that the saddle conformers 
of 4a and 4b, which are -4 and -35 kJmol-1, are therefore more stable than the cone conformers in the 
solvent, similar to what was computed in gas phase (Table S2). On the other hand, for the tert-butyl group 
analogues, calix[3]benzofuran 5a and its derivative 5b, the saddle conformers are energetically less stable 
than the cone conformers by 4 and 10 kJmol-1 in the gas phase, and by 5 and 7 kJmol-1 in solvent (Table 
S3), respectively. Similarly, saddle-4c, 4d, 4e are energetically more stable by -12, -20 and -48 kJmol-1 
than cone-4c, 4d, 4e in the gas phase, respectively (Table S3). 

 
Table S2.Geometry optimization energies using B3LYP/6-31G(d)(∆E=Echlorofom-Egas-phase). 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Compound 

Cone Saddle 

Gas phase Chloroform ∆E  

kJ mol-1 

Gas phase Chloroform ∆E  

kJ mol-1 kJ mol-1 kJ mol-1 kJ mol-1 kJ mol-1 

4a -4560873 -4560891 -17 -4560878 -4560895 -17 

5a -3322273 -3322291 -18 -3322269 -3322286 -17 

4b -24812139 -24812152 -13 -24812173 -24812188 -15 

4c -5453483 -5453506 -23 -5453495 -5453524 -28 

4d -5462889 -5462924 -35 -5462910 -5462940 -31 

4e -5763178 -5763204 -26 -5763226 -5763254 -28 

5b -4524625 -4524650 -25 -4524615 -4524643 -28 
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Table S3.Geometry optimization energies using B3LYP/6-31G(d)(∆E=ESaddle-ECone). 
 
 

 Compound 

Gas-phase Chloroform 

Cone Saddle ∆E  

kJ mol-1 

Cone Saddle  ∆E  

kJ mol-1 kJ mol-1 kJ mol-1 kJ mol-1 kJ mol-1 

4a -4560873 -4560878 -4 -4560891 -4560895 -4 

5a -3322273 -3322269 4 -3322291 -3322286 5 

4b -24812139 -24812173 -34 -24812152 -24812188 -35 

4c -5453483 -5453495 -12 -5453506 -5453524 -18 

4d -5462889 -5462910 -20 -5462924 -5462940 -16 

4e -5763178 -5763226 -48 -5763204 -5763254 -50 

5b -4524625 -4524615 10 -4524650 -4524643 7 
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Figure S40. Geometry-optimized (in CHCl3) structures of: Top Left: 4a cone (Ellipsoid); Top Right: 4a 
saddle (Ellipsoid). Bottom Left: 4a cone (ball-and-stick) and Bottom Right: 4a saddle (ball-and-stick). 
Colour code: carbon = dark grey and oxygen atom = red. All hydrogens are omitted for clarity.  
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Figure S41. Geometry-optimized (in CHCl3) structures of: Top Left: 5a cone (Ellipsoid); Top Right: 5a 
saddle (Ellipsoid). Bottom Left: 5a cone (ball-and-stick) and Bottom Right: 5a cone (ball-and-stick). 
Colour code: carbon = dark grey and oxygen atom = red. All hydrogens are omitted for clarity.  
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Figure S42. Geometry-optimized (in CHCl3) structures of: Top Left: 4b cone (Ellipsoid); Top Right: 4b 
saddle (Ellipsoid). Bottom Left: 4b cone (ball-and-stick); and Bottom Right: 4b saddle (ball-and-stick). 
Colour code: bromide = orange, carbon = dark grey and oxygen atom = red. All hydrogens are omitted for 
clarity.  
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Figure S43. Geometry-optimized (in CHCl3) structures of: Top Left: 4c cone (Ellipsoid); Top Right: 4c 
saddle (Ellipsoid). Bottom Left:4ccone (ball-and-stick); and Bottom Right: 4c saddle 
(ball-and-stick).Colour code: carbon = dark grey and oxygen atom = red. All hydrogens except aldehyde 
hydrogen (light green) are omitted for clarity. 
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Figure S44. Geometry-optimized (in CHCl3) structures of: Top Left: 4d cone (Ellipsoid); Top Right: 4d 
saddle (Ellipsoid). Bottom Left:4d cone (ball-and-stick); and Bottom Right: 5c saddle 
(ball-and-stick).Colour code: carbon = dark grey and oxygen atom = red. All hydrogens except hydroxyl 
hydrogen (light green) are omitted for clarity. 
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Figure S45. Geometry-optimized (in CHCl3) structures of: Top Left: 4e cone (Ellipsoid); Top Right: 4e 
saddle (Ellipsoid). Bottom Left: 4e cone (ball-and-stick); and Bottom Right: 4e saddle 
(ball-and-stick).Colour code: carbon = dark grey and oxygen atom = red. All hydrogens except carbonyl 
hydrogen (light green) are omitted for clarity.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



S32 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure S46. Geometry-optimized (in CHCl3) structures of: Top Left: 5bcone (Ellipsoid); Top Right: 5b 
saddle (Ellipsoid). Bottom Left: 5b cone (ball-and-stick); and Bottom Right: 5b saddle 
(ball-and-stick).Colour code: carbon = dark grey and oxygen atom = red. All hydrogens except aldehyde 
hydrogen (light green) are omitted for clarity.  
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