ELECTRONIC SUPPLEMENTARY INFORMATION

<u>Manuscript title:</u> Synthesis, structural properties, electrophilic substitution reactions and DFT computational studies of calix[3]benzofurans

<u>Author(s):</u> Md. Monarul Islam,^{*a,b*} Thamina Akther,^{*a*} Yusuke Ikejiri,^{*a*} Taisuke Matsumoto,^{*c*} Junji Tanaka,^{*c*} Shofiur Rahman,^{*d*} Paris E. Georghiou,^{*d*} David L. Hughes,^{*e*} Carl Redshaw^{*f*} and Takehiko Yamato*^{*a*}

^aDepartment of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1, Saga-shi, Saga 840-8502, Japan. Fax: (internat.) + 81(0)952/28-8548; E-mail: yamatot@cc.saga-u.ac.jp

^bChemical Research Division, Bangladesh Council of Scientific and Industrial Research(BCSIR), Dhanmondi, Dhaka-1205, Bangladesh.

^cInstitute of Material Chemistry and Engineering, Kyushu University, 6-1, Kasugakoen, Kasuga 816-8580, Japan

^dDepartment of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3X7, Canada ^eSchool of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK

^fDepartment of Chemistry, The University of Hull, Cottingham Road, Hull, Yorkshire, HU6 7RX, UK.

Table of Contents

		Page
Figure S1:	¹ H NMR spectrum of 2a	S3
Figure S2:	¹³ C NMR spectrum of 2a	S3
Figure S3:	¹ H NMR spectrum of 2b	S4
Figure S4:	¹³ C NMR spectrum of 2b	S4
Figure S5:	¹ H NMR spectrum of 4a	S5
Figure S6:	13 C NMR spectrum of 4a	S5
Figure S7:	¹ H NMR spectrum of 5a	S6
Figure S8:	13 C NMR spectrum of 5a	S6
Figure S9:	¹ H NMR spectrum of 4b	S7
Figure S10:	¹³ C NMR spectrum of 4b	S7
Figure S11:	¹ H NMR spectrum of 4c	S8
Figure S12:	¹³ C NMR spectrum of 4c	S8
Figure S13:	¹ H NMR spectrum of 4d	S9
Figure S14:	¹³ C NMR spectrum of 4d	S9
Figure S15:	¹ H NMR spectrum of 4e	S10
Figure S16:	¹³ C NMR spectrum of 4 e	S10
Figure S17:	¹ H NMR spectrum of 5b	S11
Figure S18:	¹³ C NMR spectrum of 5b	S11
Figure S19:	FT-IR of compound 2a	S12
Figure S20:	FT-IR of compound 2b	S12
Figure S21:	FT-IR of compound 4a	S13
Figure S22:	FT-IR of compound 5a	S13
Figure S23:	FT-IR of compound 4b	S14
Figure S24:	FT-IR of compound 4c	S14
Figure S25:	FT-IR of compound 4d	S15
Figure S26:	FT-IR of compound 4e	S15
Figure S27:	FT-IR of compound 5b	S16
Figure S28:	Mass-spectra of compound 2b	S16

Figure S29:	Mass-spectra of compound 4a	S17
Figure S30:	High resolution Mass-spectra of compound 5a	S17
Figure S31:	Mass-spectra of compound 4b	S18
Figure S32:	High resolution Mass-spectra of compound 4c	S18
Figure S33:	High resolution Mass-spectra of compound 4d	S19
Figure S34:	High resolution Mass-spectra of compound 4e	S19
Figure S35:	Mass-spectra of compound 5b	S20
Figure S36:	HRMS result of compound 5a	S20
Figure S37:	HRMS result of compound 4c	S21
Figure S38:	HRMS result of compound 4d	S21
Figure S39:	HRMS result of compound 4e	S22
Table S1:	Summary of crystal data for 4a and 4b	S22
	Crystal structure analysis of 4b	S23
DFT Compu	tational Studies	S24
Tables S2:	Geometry-optimization energies	S24
Tables S3:	Geometry-optimization energies	S25
Figure S40:	Geometry-optimized structure of 4a	S26
Figure S41:	Geometry-optimized structure of 5a	S27
Figure S42:	Geometry-optimized structure of 4b	S28
Figure S43:	Geometry-optimized structure of 4c	S29
Figure S44:	Geometry-optimized structure of 4d	S30
Figure S45:	Geometry-optimized structure of 4e	S31
Figure S46:	Geometry-optimized structure of 5b	S32
Reference		S32

Figure S1. ¹H-NMR spectrum (400 MHz, 298 K, *CDCl₃) of the compound 2a.

Figure S4: ¹³C-NMR spectrum (100 MHz, 298 K, *CDCl₃) of the compound 2b.

Figure S8: ¹³C-NMR spectrum (100 MHz, 298 K, *CDCl₃) of the compound 5a.

Figure S10: ¹³C-NMR spectrum (100 MHz, 298 K, *CDCl₃) of the compound 4b.

Figure S12: ¹³C-NMR spectrum (100 MHz, 298 K, *CDCl₃) of the compound 4c.

Figure S14: ¹³C-NMR spectrum (100 MHz, 298 K, *CDCl₃) for the compound 4d.

Figure S18: ¹³C-NMR spectrum (100 MHz, 298 K, *CDCl₃) of the compound 5b.

Figure S19: FT-IR spectrum of the compound 2a.

Figure S20: FT-IR spectrum of the compound 2b.

Figure S21: FT-IR spectrum of the compound 4a.

Figure S22: FT-IR spectrum of the compound 5a.

Figure S23: FT-IR spectrum of the compound 4b.

Figure S24: FT-IR spectrum of the compound 4c.

Figure S25: FT-IR spectrum of the compound 4d.

Figure S26: FT-IR spectrum of the compound 4e.

Figure S27: FT-IR spectrum of the compound 5b.

Figure S28: Mass-spectrum of the compound 2b.

Figure S30: High resolution Mass-spectrum of the compound 5a.

Figure S31: Mass-spectrum of the compound 4b.

Figure S32: High resolution Mass-spectrum of the compound 4c.

Figure S35: Mass-spectrum of the compound 5b.

Figure S36: HRMS result of the compound 5a.

[Theoretical Ion Distribution] Molecular Formula : C42 H42 06 (7, 642 2001 WW 642 7010	11 6 22 0)
Base Peak : 642.2981, Averaged MW : 642.7880 (a),	642. 7888 (w)
m/z INT. 642. 2981 100. 0000 643. 3015 46. 9424 644. 3046 11. 9610 ******* 645. 3076 2. 1682 645. 3076 2. 1682 646. 3104 0. 3101 647. 3133 0. 0369 648. 3160 0. 0038 649. 3188 0. 0003	онс + сно
Deta : 11may16-YAMAT0002 Date : 11-May-2016 11:00	KILLY
Sample : YM100286	СНО
Note : CHCI 3 + NBA ref;PEG#600	
Inlet : Direct Ion Mode : FAB+	
RT : 0.00 min Scan# : 1	
Elements : C 70/0, H 70/0, O 8/0	
Mass Tolerance : 10ppm, Smmu if m/z < 500, 10mmu if m/z > 1000	
Unsaturation (U.S.) : -0.5 - 100.0	
Observed m/z Int% Err[ppm / mmu] U.S. Composit	ion
1 042.2994 93.59 +2.0 / +1.3 22.0 C42 H42	06

Figure S37: HRMS result of the compound 4c.

[Theoretical Ion Distribution] Molecular Formula : C42 H48 06 (m/z 648.3451, MW 648.8395, U.S. 19.0) Base Peak : 648.3451, Averaged MW : 648.8350(a), 648.8358(w) ******* HOH₂C CH₂OH Ó Ő Data : 11may16-YAMAT0009 Date : 11-May-2016 14:23 Instrument : MStation с́н₂он Sample : YM100299 Note : CHCI 3 + NBA ref Inlet : Direct Ion Mode : FAB+ NBA ref;PEG#600 RT : 0.25 min Scan# : 2 Elements : C 70/0, H 70/0, O 8/0 Mass Tolerance : 10ppm, Smmu if m/z < 500, 10mmu if m/z > 1000 Unsaturation (U.S.) : -0.5 - 100.0 Observed m/z Int% Err[ppm / mmu] U.S. Composition 1 648.3472 61.54 +3.3 / +2.1 19.0 C42 H48 06

Figure S38: HRMS result of the compound 4d.

Figure S39: HRMS result of the compound 4e.

X-ray crystallography

Table S1: Summary of crystal data for 4a and 4b

Parameter	4a	4b					
Empirical formula	$C_{39} H_{42} O_3$	C ₃₉ H ₃₉ Br ₃ O ₃ , CHCl ₃ , ca					
		6(CH ₄ O)					
Formula weight [g mol ⁻¹]	558.76	1107.05					
Crystal system	trigonal	trigonal					
Space group	R-3	R-3					
A [Å]	19.3942(14)	15.4391(12)					
<i>B</i> [Å]	19.3942(14)	15.4391(12)					
<i>C</i> [Å]	16.5448(6)	31.782 (4)					
α [°]	90.0000	90.0000					
β [°]	90.0000	90.0000					
γ [°]	120.0000	120.0000					
Volume [Å ³]	5389.4(6)	6560.8(13)					
Z	6	6					
Density, calcd [g m ⁻³]	1.033	1.681					
Temperature [K]	123	140					
Unique reflns	2193	1888					
Obsd reflns	1984	1293					
Parameters	127	182					
$R_{ m int}$	0.0399	0.076					
$R[I>2\sigma(I)]^a$	0.0647	0.072					
$wR[I>2\sigma(I)]^{b}$	0.1455	0.138					
$\overrightarrow{\text{GOF}}$ on $\overrightarrow{\text{F}^2}$	1.154	1.119					

Table S1 Summary of crystal data for **4a** and **4b**.^{*a,b*}

^{*a*} Conventional *R* on F_{hkl}: $\Sigma ||F_o| - |F_c||/\sigma |F_o|$. ^{*b*} Weighted *R* on $|F_{hkl}|^2$: $\Sigma [w(F_o^2 - F_c^2)^2]/\Sigma [w(F_o^2)^2]^{1/2}$

Crystal structure analysis of the tris-benzofuran calixarene, compound 4a:¹⁻⁴

Crystal data: $C_{39}H_{42}O_3$. M = 558.76. Trigonal, space group R-3 (no. 148; hexagonal axes), a = b = 19.3942(14), c = 16.5448(6) Å, $\alpha = \beta = 90$, $\gamma = 120^{\circ}$, V = 5389.4(6) Å³. Z = 6, Dc = 1.033 g cm⁻³, F(000) = 3408, T = 123(1) K, μ (Cu-K α) = 4.96 cm⁻¹, λ (Mo-K α) = 1.5418 Å.

A colorless prism crystal of $C_{39}H_{42}O_3$ having approximate dimensions of 0.350 x 0.250 x 0.200 mm was mounted on a glass fiber. All intensity measurements were made on a Rigaku R-AXIS RAPID diffractometer using graphite monochromated Cu-K α radiation. The data were collected at a temperature of -150 ± 1°C to a maximum 20 value of 136.4°. Of the 20857 reflections collected, 2193 were unique (Rint = 0.0399) and 1984 were 'observed'; equivalent reflections were merged. The linear absorption coefficient, μ , for Cu-K α radiation is 4.956 cm⁻¹. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.641 to 0.906. The data were corrected for Lorentz and polarization effects. The structure was solved by direct methods¹ and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement on F² was based on all 2193 reflections and 127 variable parameters and converged with R₁ = 0.071 and wR₂ = 0.146; for the observed data, R₁ = 0.065. The goodness of fit was 1.15. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.36 and -0.33 eÅ⁻³, respectively.

Neutral atom scattering factors were taken from International Tables for Crystallography (IT), Vol. C, Table 6.1.1.4.² All calculations were performed using the CrystalStructure³ crystallographic software package except for refinement, which was performed using SHELXL2013.⁴

Crystal structure analysis of a tris-benzofuran calixarene/CHCl₃/methanol complex, compound 4b:⁵⁻⁸

Crystal data: $C_{39}H_{39}Br_{3}O_{3}$, CHCl₃, *ca* 6(CH₄O). M = 1107.1. Trigonal, space group R-3 (no. 148; hexagonal axes), a = b = 15.4391(12), c = 31.782(4) Å, $\alpha = \beta = 90$, $\gamma = 120$ °, V = 6560.8(13) Å³. Z = 6, Dc = 1.681 g cm⁻³, F(000) = 3408, T = 140(1) K, μ (Mo-K α) = 30.1 cm⁻¹, λ (Mo-K α) = 0.71073 Å.

Crystals are colorless, cubic blocks. One, *ca* 0.43 x 0.37 x 0.25 mm, was mounted in oil on a glass fiber and fixed in the cold nitrogen stream on an Oxford Diffraction Xcalibur-3 CCD diffractometer equipped with Mo-K α radiation and graphite monochromator. Intensity data were measured by thin-slice ω - and φ -scans. Total no. of reflections recorded, to $\theta_{max} = 22.5^{\circ}$, was 13024 of which 1888 were unique (Rint = 0.076); 1293 were 'observed' with I > $2\sigma_{I}$.

Data were processed using the CrysAlis-CCD and -RED (1) programs. The structure was determined by the direct methods routines in the SHELXS program (2A) and refined by full-matrix least-squares methods, on F²'s, in SHELXL (2B). The analysis shows the calixarene molecule lying around a threefold symmetry axis with, on one side, a CHCl₃ solvent molecule (also on the symmetry axis) and, on the other side, a complex ring structure, presumably of a disordered array of methanol molecules; in this region, 50 atoms have been refined as isotropic carbon atoms, mostly with site occupancies of 0.5, about a point of -3 symmetry. In the calixarene and chloroform molecules, the non-hydrogen atoms were refined with anisotropic thermal parameters; hydrogen atoms were included in idealized positions and their Uiso values were set to ride on the Ueq values of the parent carbon atoms. At the conclusion of the refinement, wR₂ = 0.149 and R₁ = 0.114 (2B) for all 1888 reflections weighted w = $[\sigma^2(F_o^2) + (0.0368P)^2 + 104.34P]^{-1}$ with P = $(F_o^2 + 2F_c^2)/3$; for the 'observed' data only, R₁ = 0.072.

In the final difference map, the highest peak (*ca* 0.37 $e^{A^{-3}}$) was close to Br(13).

Scattering factors for neutral atoms were taken from reference.⁷ Computer programs used in this analysis have been noted above, and were run through WinGX (4) on a Dell Optiplex 755 PC at the University of East Anglia.

General description for the DFT computational study:^{9,10}

Density functional theory (DFT) computational studies were carried out to determine the geometry-optimized energies of compounds 4a-e and 5a-b. The starting structures were generated with the initial geometries based upon the X-ray structures of **4a** and **4b** and from the presumed structures of 4c-4d (derived from *cone*-4a and *cone*-4b) and 5a-b using SpartanPro'10 with the MMFF94 method.⁹ The individual geometry-optimized structures of these molecules were first conducted in the gas phase and then in solvent (chloroform) with the B3LYP/6-31G(d) basis set using Gaussian-09.¹⁰ The results are summarized in Tables S2 and S3 for both cone and saddle conformations for compounds 4a-e, 5a-b (Figures S36 to S42). The results presented in Table S2 show that 4a–e, 5a–b were energetically more-favoured in solvent CHCl₃ than in the gas phase. The results presented in Table S3 of the synthesized calix[3]benzofurans and their derivatives, 4a-e, suggest that the *saddle* conformers are more stable than the *cone* isomers. The results presented in Tables S2 & S3 show that among the calix[3]benzofurans, 4b is the energetically most-favoured (in both the solvent and gas-phase) and the order is as follows: 4b>4e>4d>4c>4a>5b>5a in both the solvent and gas phase. So by introducing the different groups at the furan moieties, the derivatives become energetically more favored over the corresponding calix[3]benzofuran according to the increasing size of groups (i.e. $COMe > CH_2OH >$ CHO) except for 4b. In the case of 4b, there may be two factors influencing the stability: bromine is electronegative in nature and has greater electron-density due to multiple lone-pairs of electrons.

The DFT optimized B3LYP/6-31G(d) energies of these two conformers imply that the *saddle* conformers of **4a** and **4b**, which are -4 and -35 kJmol⁻¹, are therefore more stable than the *cone* conformers in the solvent, similar to what was computed in gas phase (Table S2). On the other hand, for the *tert*-butyl group analogues, calix[3]benzofuran **5a** and its derivative **5b**, the *saddle* conformers are energetically less stable than the *cone* conformers by 4 and 10 kJmol⁻¹ in the gas phase, and by 5 and 7 kJmol⁻¹ in solvent (Table S3), respectively. Similarly, *saddle*-**4c**, **4d**, **4e** are energetically more stable by -12, -20 and -48 kJmol⁻¹ than *cone*-**4c**, **4d**, **4e** in the gas phase, respectively (Table S3).

	Cone			Saddle		
	Gas phase	Chloroform	ΔΕ	Gas phase	Chloroform	ΔΕ
Compound	kJ mol ⁻¹	kJ mol- ¹				
4a	-4560873	-4560891	-17	-4560878	-4560895	-17
5a	-3322273	-3322291	-18	-3322269	-3322286	-17
4b	-24812139	-24812152	-13	-24812173	-24812188	-15
4c	-5453483	-5453506	-23	-5453495	-5453524	-28
4d	-5462889	-5462924	-35	-5462910	-5462940	-31
4 e	-5763178	-5763204	-26	-5763226	-5763254	-28
5b	-4524625	-4524650	-25	-4524615	-4524643	-28

Table S2.Geometry optimization energies using B3LYP/6-31G(d)($\Delta E = E_{chlorofom} - E_{gas-phase}$).

	Gas-phase			Chloroform		
	Cone	Saddle	ΔΕ	Cone	Saddle	ΔΕ
Compound	kJ mol ⁻¹					
4a	-4560873	-4560878	-4	-4560891	-4560895	-4
5a	-3322273	-3322269	4	-3322291	-3322286	5
4 b	-24812139	-24812173	-34	-24812152	-24812188	-35
4c	-5453483	-5453495	-12	-5453506	-5453524	-18
4d	-5462889	-5462910	-20	-5462924	-5462940	-16
4e	-5763178	-5763226	-48	-5763204	-5763254	-50
5b	-4524625	-4524615	10	-4524650	-4524643	7

Table S3.Geometry optimization energies using B3LYP/6-31G(d)($\Delta E = E_{Saddle} - E_{Cone}$).

Figure S40. Geometry-optimized (in CHCl₃) structures of: *Top Left*: **4a** *cone* (Ellipsoid); *Top Right*: **4a** *saddle* (Ellipsoid). *Bottom Left*: **4a** *cone* (ball-and-stick) and *Bottom Right*: **4a** *saddle* (ball-and-stick). Colour code: carbon = dark grey and oxygen atom = red. All hydrogens are omitted for clarity.

Figure S41. Geometry-optimized (in CHCl₃) structures of: *Top Left*: **5a** *cone* (Ellipsoid); *Top Right*: **5a** *saddle* (Ellipsoid). *Bottom Left*: **5a** *cone* (ball-and-stick) and *Bottom Right*: **5a** *cone* (ball-and-stick). Colour code: carbon = dark grey and oxygen atom = red. All hydrogens are omitted for clarity.

Figure S42. Geometry-optimized (in CHCl₃) structures of: *Top Left*: **4b** *cone* (Ellipsoid); *Top Right*: **4b** *saddle* (Ellipsoid). *Bottom Left*: **4b** *cone* (ball-and-stick); and *Bottom Right*: 4b *saddle* (ball-and-stick). Colour code: bromide = orange, carbon = dark grey and oxygen atom = red. All hydrogens are omitted for clarity.

Figure S43. Geometry-optimized (in CHCl₃) structures of: *Top Left*: **4c** *cone* (Ellipsoid); *Top Right*: **4c** *saddle* (Ellipsoid). *Bottom Left*:**4c***cone* (ball-and-stick); and *Bottom Right*: **4c** *saddle* (ball-and-stick).Colour code: carbon = dark grey and oxygen atom = red. All hydrogens except aldehyde hydrogen (light green) are omitted for clarity.

Figure S44. Geometry-optimized (in CHCl₃) structures of: *Top Left*: **4d** *cone* (Ellipsoid); *Top Right*: **4d** *saddle* (Ellipsoid). *Bottom Left*:**4d** *cone* (ball-and-stick); and *Bottom Right*: **5c** *saddle* (ball-and-stick).Colour code: carbon = dark grey and oxygen atom = red. All hydrogens except hydroxyl hydrogen (light green) are omitted for clarity.

Figure S45. Geometry-optimized (in CHCl₃) structures of: *Top Left*: **4e** *cone* (Ellipsoid); *Top Right*: **4e** *saddle* (Ellipsoid). *Bottom Left*: **4e** *cone* (ball-and-stick); and *Bottom Right*: **4e** *saddle* (ball-and-stick).Colour code: carbon = dark grey and oxygen atom = red. All hydrogens except carbonyl hydrogen (light green) are omitted for clarity.

Figure S46. Geometry-optimized (in CHCl₃) structures of: *Top Left*: **5b***cone* (Ellipsoid); *Top Right*: **5b** *saddle* (Ellipsoid). *Bottom Left*: **5b** *cone* (ball-and-stick); and *Bottom Right*: **5b** *saddle* (ball-and-stick).Colour code: carbon = dark grey and oxygen atom = red. All hydrogens except aldehyde hydrogen (light green) are omitted for clarity.

References

- 1. <u>SIR2008</u>: Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. Siliqi, D. and Spagna R. (2007). *J. Appl. Cryst.***40**, 609–613.
- 2. 'International Tables for Crystallography', Vol. C (1992). Ed. A.J.C. Wilson, Kluwer Academic Publishers, Dordrecht, Netherlands, Table 6.1.1.4, pp. 572.
- 3. <u>CrystalStructure 4.1</u>: Crystal Structure Analysis Package, Rigaku Corporation (2000–2014). Tokyo 196–8666, Japan.
- 4. <u>SHELXL2013</u>: Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- 5. Programs CrysAlis-CCD and -RED, Oxford Diffraction Ltd., Abingdon, UK (2005).
- 6. G. M. Sheldrick, SHELX-Programs for crystal structure determination (SHELXS-2013) and refinement (SHELXL-2014), *ActaCryst.* (2008) A**64**, 112–122 and (2015) C**71**, 3–8.
- 7. *'International Tables for X-ray Crystallography'*, Kluwer Academic Publishers, Dordrecht (1992). Vol. C, pp. 500, 219 and 193.
- 8. L. J. Farrugia, (2012) J. Appl. Cryst.45, 849–854.
- 9. Initial molecular modeling calculations using the MMFF94 were performed using the PC Spartan'10 software from Wavefunction Inc., Irvine CA.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.;

Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.: Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09, Revision D.01*; Gaussian, Inc., Wallingford CT, 2013.