Supporting Information

New D-D- π-A type organic dyes having carbazol-N-yl phenothiazine moiety as a donor (D-D) unit for efficient dye-sensitized solar cells: Experimental and theoretical studies
D. Muenmart, ${ }^{a}$ N. Prachumrak, ${ }^{a}$ R. Tarsang, ${ }^{\text {b }}$ S. Namungruk, ${ }^{\mathrm{c}}$ S. Jungsuttiwong, ${ }^{\text {b }}$ T.Sudyoadsuk, ${ }^{a}$

$$
\text { P. Pattanasattayavong }{ }^{\text {a }} \text { and V. Promarak }{ }^{\mathrm{a}} \text { * }
$$

${ }^{\text {a }}$ Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210 Thailand.
${ }^{\mathrm{b}}$ Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Warinchumrap, Ubon Ratchathani, 34190 Thailand.
${ }^{\text {c }}$ NANOTEC, National Science and Technology Development Agency, 111 Phahonyothin Road, Khlong Luang, Pathum Thani, 12120 Thailand

Quantum chemical calculation

| CPhPA | Front view | Side view |
| :--- | :--- | :--- | :--- |
| CPhTPA | | |

Figure S1. Optimized structures of the dyes calculated by B3LYP/6-31G(d,p) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent.

Table S1 Excitation energy (eV), oscillator strength (f) and transition composition of the dyes at the 20 lowest transitions $(f>0.200)$ were calculated by TD CAM-B3LYP/6-31G(d,p) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{C}-\mathrm{PCM}$ model).

Dye		E_{ex} $[\mathrm{eV}, \mathrm{nm}]$	f	Transition contribution
CPhPA	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$	$3.04(407)$	0.9708	$0.61(\mathrm{H} \rightarrow \mathrm{L})+0.25(\mathrm{H} \rightarrow \mathrm{L}+1)$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{2}$	$3.82(324)$	0.2670	$0.54(\mathrm{H} \rightarrow \mathrm{L}+1)+0.24(\mathrm{H}-3 \rightarrow \mathrm{~L})$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{3}$	$4.06(305)$	0.3284	$0.52(\mathrm{H}-3 \rightarrow \mathrm{~L}+2)+0.21(\mathrm{H} \rightarrow \mathrm{L})$
CPhTPA	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$	$3.00(413)$	1.7595	$0.52(\mathrm{H} \rightarrow \mathrm{L})+0.27(\mathrm{H}-3 \rightarrow \mathrm{~L})$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{4}$	$4.31(287)$	0.2981	$0.35(\mathrm{H} \rightarrow \mathrm{L}+3)$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{10}$	$4.81(257)$	0.2607	$0.64(\mathrm{H}-2 \rightarrow \mathrm{~L}+2)$
CPhT2PA	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$	$2.82(440)$	2.1499	$0.51(\mathrm{H} \rightarrow \mathrm{L})+0.24(\mathrm{H} \rightarrow \mathrm{L}+1)$
	$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{13}$	$4.81(257)$	0.2505	$0.57(\mathrm{H}-3 \rightarrow \mathrm{~L}+2)$

Note: H = HOMO, L = LUMO, L+1 = LUMO+1, ..

Figure S2. DPV curves measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with n - $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ as a supporting electrolyte at a scan rate of $50 \mathrm{mV} \mathrm{s}^{-1}$.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra

Compound 3

Compound 4

Compound 5

Compound 6

Compound 7

Compound 8

Compound 9

Compound 10

CPhPA

CPhTPA

CPhT2PA

