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Figure S1: DSC traces of P(3,4HB) after different pre-treatments, (a) cooling and (b) second heating 

scans. [(I): as-received P(3,4HB), (II): after soxhlet extraction, (III): after aq. HCl-treatment]. The 

crystallization temperature, as well as the degree of crystallization, increased for the pre-treated samples. 

However, the cold crystallization decreased and the melting temperature increased after pre-treatment, 

indicating that the polymer crystallized more efficiently after the pre-treatment.
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Figure S2: TGA traces of P(3HB) after different pre-treatments recorded at 10 °C/min under nitrogen. 

The decomposition temperatures increased by ~10 °C after the pre-treatments, compared to the as-

received P(3HB).
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Figure S3: Shear storage modulus (a) and weight average molecular weights (b) of aq. HCl-treated (I) and 

as-received P(3HB) (II), and PBAT (III). It was not possible to analyze the as-received P(3HB) before 

extrusion. However, assuming the Mw to be identical to the aq. HCl-treated polymer [as observed for 

P(3,4HB)] there was a 40% decrease in Mw for the non-treated sample during the first 2 min. The Mw of 

the acid- treated sample decreased with 11% during the first 2 min. PBAT is also displayed for reference 

and shows a stable Mw value during 10 min. 
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Figure S4: DSC traces of P(3HB) after different pre-treatments, (a) cooling and (b) second heating scans 

at 10 °C/min. [(I): as-received P(3,4HB), (II): after soxhlet extraction, (III): after aq. HCl-treatment]. Any 

effects of the pre-treatments were not noticeable in these measurements.
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Figure S5: SEM images of cryo-fracture surfaces of P(3,4HB):PBAT blends with weight ratios (a) 20:80, 

(b) 40:60, (c) 60:40 and (d) 80:20. The phase separation was clearly visible for 80:20 blend with PBAT 

domains of approx. 1 μm in a matrix of P(3,4HB).
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Figure S6: TGA traces of the P(3HB):PBAT blends.
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Figure S7: DSC traces of P(3,4HB):PBAT blends, (a) cooling and (b) second heating scans at 10 °C/min. 
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Figure S8: Tensile loss modulus measured by DMA of P(3HB):PBAT blends.

Table S1: Thermal properties of P(3,4HB):PBAT blends.

P(3,4HB):PBAT 

wt:wt

Td
PHA/Td

PBAT

(°C)

Tm1
PHA/Tm1

PBAT

 (°C)

Tm2
PHA/Tm2

PBAT

 (°C)

Tc
PHA/Tc

PBAT

 (°C)

100:0 290/- 153/- 167/- 100/-

80:20 287/386 151/- 161/- 100/-

60:40 288/387 150/- 161/- 99/77

50:50 292/390 150/- 162/- 99/76

40:60 290/388 150/127 162/- 98/75

20:80 295/395 -/122 -/- -/77

0:100 -/391 -/123 -/- -/82
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Figure S9: Tensile storage modulus (a) and tan δ curves (b) for P(3,4HB):PBAT blends, analyzed at 3 

°C/min and 1 Hz in the linear viscoelastic. The storage modulus decreased with addition of PBAT with the 

largest decrease between 20 and 40 wt% PBAT indicating a phase inversion. Two visible tan δ peaks 

indicated the immiscibility of the blends.
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Figure S10: Tensile loss modulus measured by DMA of P(3,4HB):PBAT blends (a), and the Tg of 

P(3,4HB):PBAT blends determined from loss modulus peak value (b). The Tg for P(3,4HB) determined 

from the peak value of the loss modulus showed a maximum value at 60 wt% P(3,4HB), while the Tg of 

PBAT decreased with increasing content of P(3,4HB).
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Figure S11: DSC traces of P(3HB):PBAT 20:80 blends with different contents of DCP added, (a) cooling 

and (b) second heating scans.
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Figure S12: DSC traces of P(3HB):PBAT 60:40 blends with different contents of DCP added: (a) cooling 

and b) second heating scans at 10 °C/min. There was no visible trend in the Tg value, and the transition 

was difficult to detect at this heating rate. The crystallinity of the polymers was difficult to determine 

because of overlapping melting peaks. Still, a small decrease in crystallinity at the addition of 1 wt% DCP 

was visible from the heating scan. In addition, there was a trend of decreasing melting and crystallization 

temperatures with the addition of DCP.
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Figure S13: Dynamic shear modulus and phase shift for P(3HB)/PBAT 60:40 blends with different 

contents of DCP added, as measured by rheology at 1 Hz and 160 °C. The modulus increased with 

increasing DCP content. In addition, the phase shift decreased with the addition of the peroxide.
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Figure S14: Tensile storage modulus (a) and tan δ curves (b) for P(3HB):PBAT 60:40 blends with 

different contents of DCP added, analyzed at 3 °C/min and 1 Hz in the linear viscoelastic region: (a) 

storage modulus and (b) tan δ. The addition of DCP caused a decrease in the modulus at high 

temperatures, while the amount of added DCP had no effect. At low temperatures there was a decrease in 

modulus from 0 to 0.2 wt% DCP and then an increasing modulus with increasing amount DCP was 

observed. The damping ability of P(3HB) increased with the addition of peroxide, as seen in the tan δ 

data. This may be due to crosslinking of the P(3HB) which formed a gel or due to morphology changes 

caused by the compatibilization. 
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Figure S15: Loss modulus for P(3HB):PBAT 60:40 blends with different amounts of DCP added. The 

inset shows the Tg for P(3HB) and PBAT. The Tg of P(3HB), as detected from the loss modulus, decreased 

with the addition of peroxide. There was a small increase in Tg with increasing DCP content when using 

the level at 0.2 wt% as a reference.


