Electronic Supplementary Information (ESI)

A Photoswitchable Diarylethene Heterodimer for Use as a

Multifunctional Logic Gate

Qi Ai, Kwang-Hyun Ahn *

Department of Applied Chemistry, Kyung Hee University, Yongin 446-701, Republic

of Korea

E-mail: khahn@khu.ac.kr;

Fax: 82-31-202-7337; Tel: 82-31-201-2447

Supporting Information

Table of Contents:	
Part A: Experimental Section	
1. BTF-BTH function as OR gate	S2
2. BTF-BTH function as INHIBIT, and AND gate	S2
3. Detailed information on inputs	\$3
4. Synthesis	S4

Part B: ¹H-NMR spectrum, ¹³C NMR spectrum, HRMS spectrum.

1. BTF-BTH functions as OR gate

Table S1.	Truth	Tables	for	OR	gate

inputs		output
а	b	OR gate
(312nm)	(378nm)	(A 542nm)
0	0	0
1	0	1
0	1	1
1	1	1

Figure S1. Performance of **BTF-BTH** as the OR gate. The input combinations (0 = off, 1 = on) for the gate are shown at the bottom of the figure. The each bar shows the output in response to Input. The threshold (dashed line) was set arbitrary to demonstrate the gate.

2. BTF-BTH functions as INHIBIT, and AND gate

Table S2. Truth Tables for INH and AND gate

inputs		outputs	
a	b	INH gate	AND gate
(312nm)	(Cu^{2+})	(A 542nm)	(Em 492nm)
0	0	0	0
1	0	1	0
0	1	0	0
1	1	0	1

Figure S2. Performance of **BTF-BTH** as INH and AND gates. The input combinations (0 = off, 1 = on) for all gates are shown at the bottom of the figure. The each bar shows the output in response to Input. The threshold (dashed line) was assigned arbitrary to demonstrate the gate.

3. Detailed information on inputs

The conditions for applying inputs and measuring outputs for the various functions shown in the paper are given below.

Figure S1. Initial state: **BTFo-BTHo** Inputs: Input *a*: 312 nm for 115s Input *b*: 378nm for 1h Output: Absorbance at 542 nm Reset: Visible light for 600s Figure 5. Initial state: **BTFo-BTHo** Inputs: First input: 312 nm for 115 s Second input: 540nm for 2 h Output: Emission at 492 nm after 400 nm excitation Reset: Visible light for 600s

Figure S2. Initial state: **BTFo-BTHo** Inputs: Input *a*: 312 nm for 115s Input *b*: Cu²⁺ 1eq Outputs: INH2 gate: Absorbance at 542 nm AND gate: Emission at 492 nm after excitation at 400 nm Reset: Visible light for 600s

Figure 6. Initial state: **BTFo-BTHo** Inputs: In: 312 nm for 115s Ad: Cu²⁺ 1eq Output: Emission at 605 and 492 nm after excitation at 400 nm Reset: Visible light for 600s

4. Synthesis

4,4'-(3,3'-(4-oxo-5,6-dihydro-4H-thieno[2,3-b]thiopyran-2,3-diyl)bis(2-methylbenzo[b]thiophene-6,3-diyl))bis(4-oxobutanoic acid) (5)

AlCl₃ (0.18 g, 1.32 mmol) was added to a solution of **BTHTO** (0.10 g, 0.22 mmol) in CH₂Cl₂ (15 mL) at room temperature. After stirring for 5 min at room temperature, succinic anhydride (0.13 g, 1.32 mmol) was added to the reaction mixture. The solution was stirred for 4 h at room temperature, and then 1 M HCl (5 mL) was added to quench the reaction. The reaction mixture was extracted with CH₂Cl₂. The organic layer was washed with water followed by brine solution and dried over MgSO₄. The

organic layer was filtered and concentrated to give the crude product, which was purified by column chromatography (EA) to give 2 (0.03 g, 20%) as a reddish powder;

¹H NMR(CDCl3, 300MHz) δ (ppm): 8.32 (s, 1 H), 8.22 (s, 1H), 7.93 (d, J = 9Hz, 0.66H), 7.86 (d, J = 9 Hz, 0.66H), 7.70 (t, J = 15 Hz, 1.54H), 7.52 (d, J = 9 Hz, 0.71H), 7.37-7.26 (m, 0.43H), 3.48-3.21 (m, 6H), 2.83-2.76 (m, 6H), 2.48 (s,1.5H), 2.24 (s,1.5H), 1.90 (d, J = 6 Hz, 3H); HRMS (FAB+): *m*/*z* calcd for C₃₃H₂₆O₇S₄ [M+H]⁺: 663.8361; found: 663.8382.

4-(3-(2-(6-ethyl-2-methylbenzo[b]thiophen-3-yl)-4-oxo-5,6-dihydro-4Hthieno[2,3-b]thiopyran-3-yl)-2-methylbenzo[b]thiophen-6-yl)-4-oxobutanoic acid (7)

AlCl₃ (0.11 g, 0.80 mmol) was added to a solution of 6^1 (0.10 g, 0.20 mmol) in CH₂Cl₂ (15 mL) at room temperature. After stirring for 5 min at room temperature, succinic anhydride (0.08 g, 0.80 mmol) was added to the reaction mixture. The solution was stirred for 4 h at room temperature, and then 1 M HCl (5 mL) was added to quench the reaction. The reaction mixture was extracted with CH₂Cl₂. The organic layer was washed with water followed by brine solution and dried over MgSO₄. The organic layer was filtered and concentrated to give the crude product, which was purified by column chromatography (Hex/EA=4:1) to give **5** (0.047 g, 40%) as a reddish powder;

¹H NMR (CDCl₃, 300MHz) δ (ppm): 8.35 and 8.25 (s×2, 1H), 7.86 (d, J = 9 Hz, 0.58 H), 7.64-7.51 (m, 1.59H) , 7.39 (d, J = 9Hz, 0.67H), 7.26-7.18(m, 2.16H), 3.55-3.29 (m, 4H), 2.91-2.78 (m, 6H), 2.45 (s, 1H), 2.38 (s, 1H), 1.90 and 1.77 (s×2, 4H), 1.28-1.18 (m, 3H); HRMS (FAB+): *m/z* calcd for C₃₁H₂₆O₄S₄ [M+H]⁺: 591.8159; found: 591.8171.

C:\Documents and Settings\hsham\바탕 화면\DATA\AI QI\H sensor paper\mono-BTFO4.als

C:\Documents and Settings\hsham\바탕 화면\DATA\AI QI\H sensor paper\mono-BTF04 CNMR.als

C:\Documents and Settings\hsham\바당 확면\DATA\AI QI\Logic gate\AQ-143.als AQ-143

References

1. Q. Ai, S. Pang and K.-H. Ahn, *Chem. –Eur. J.*, 2015, DOI: 10.1002/chem.201504131, n/a-n/a.