Supporting Information

Heptazine-based graphitic carbon nitride as an efficient hydrogen

purification membrane

Yujin Ji,⁺ Huilong Dong,⁺ Haiping Lin,⁺* Liling Zhang,⁺ Tingjun Hou,⁺ Youyong Li⁺*

[†]Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-

Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.

Email: yyli@suda.edu.cn, hplin@suda.edu.cn

We test the influence of the periodicity of the adsorbates on the energy barrier. The permeation barrier of H₂ through 1×1 g-C₃N₄ is 0.55 eV and it through 2×2 g-C₃N₄ is 0.48 eV. The permeation barriers of gas molecules permeating 2x2 supercells are 0.1~0.2 eV lower than that in the 1x1 unit cell, indicating that the periodicity of adsorbates plays a role in the energy barriers. However, every pore of g-C3N4 is a possible pathway to diffuse when the surrounding is filled with massive gas molecules. Thus the structure of unit cell is adopted in our paper.

Figure S1. DOS of (a) H_2O absorbed on g-C₃N₄ and (b) pure buckled g-C₃N₄.

Figure S2. Snapshots of (a) H_2 , (b) N_2 , (c) H_2O , (d)CO, (e)CO₂ and (f)CH₄ permeating through g-C₃N₄ nanosheet in the 0~1000ps MD simulation at 300K. The blue, grey, white and red beads represent the nitrogen, carbon, hydrogen, and oxygen atoms respectively.