Supporting Information

Heptazine-based graphitic carbon nitride as an efficient hydrogen purification membrane

Yujin Ji,† Huilong Dong,† Haiping Lin,†* Liling Zhang,† Tingjun Hou,† Youyong Li†*

†Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.

Email: yyli@suda.edu.cn, hplin@suda.edu.cn

We test the influence of the periodicity of the adsorbates on the energy barrier. The permeation barrier of H_2 through 1×1 g- C_3N_4 is 0.55 eV and it through 2×2 g- C_3N_4 is 0.48 eV. The permeation barriers of gas molecules permeating 2x2 supercells are $0.1\sim0.2$ eV lower than that in the 1x1 unit cell, indicating that the periodicity of adsorbates plays a role in the energy barriers. However, every pore of g-C3N4 is a possible pathway to diffuse when the surrounding is filled with massive gas molecules. Thus the structure of unit cell is adopted in our paper.

Figure S1. DOS of (a) H₂O absorbed on g-C₃N₄ and (b) pure buckled g-C₃N₄.

Figure S2. Snapshots of (a) H_2 , (b) N_2 , (c) H_2O , (d)CO, (e) CO_2 and (f) CH_4 permeating through g- C_3N_4 nanosheet in the $0\sim1000$ ps MD simulation at 300K. The blue, grey, white and red beads represent the nitrogen, carbon, hydrogen, and oxygen atoms respectively.