A Practical Green Chemistry Approach to Synthesize Fused Bicyclic 4*H*-Pyranes via an Amine Catalysed 1,4-Addition and Cyclization Cascade

Jun-Long Li,^a Qiang Li,^{*a} Kai-Chuan Yang,^{a,c} Yi Li,^a Liang Zhou,^a Bo Han,^b Cheng Peng^{*a} and Xiao-Jun Gou^{*a}

^{a.} Antibiotics Innovation and Advanced Manufacturing Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, PR China. E-mail: liqiang@cdu.edu.cn; gouxj@163.com

^{b.} State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. E-mail: pengcheng@cdutcm.edu.cn

^{c.} Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.

Supporting Information

Table of Contents

- 1. General Information
- 2. General Procedure for the Optimization of the Reaction Conditions
- 3. General Procedure for the Synthesis of the fused bicyclic 4H-pyrane 4
- 4. Crystal Data and Structure Refinement for the representative product 41
- 5. Procedure for in vitro minimum inhibitory concentration assay.
- 6. References and Notes
- 7. NMR Spectra of the fused bicyclic 4*H*-pyranes 4

1. General Information

<u>General Procedures.</u> All reactions were performed in oven-dried or flame-dried reaction vessels, modified Schlenk flasks, or round-bottom flasks. The flasks were fitted with Teflon screw caps and reactions were conducted under an atmosphere of argon if needed. Gas-tight syringes with stainless steel needles were used to transfer air- and moisture-sensitive liquids. All moisture and/or air sensitive solid compounds were manipulated inside normal desiccators. Flash column chromatography was performed using silica gel (40–63 μ m, 230–400 mesh).

Analytical thin layer chromatography (TLC) was performed on silica gel 60 F_{254} aluminum plates (Merck) containing a 254 nm fluorescent indicator. TLC plates were visualized by exposure to short wave ultraviolet light (254 nm) and to a solution of KMnO₄ (1 g of KMnO₄, 6 g of K₂CO₃ and 0.1 g of KOH in 100 mL of H₂O) or vanillin (2 g of vanillin and 4 mL of concentrated H₂SO₄ in 100 mL of EtOH) followed by heating.

Organic solutions were concentrated at 30-50 $^{\circ}$ C on rotary evaporators at ~10 torr followed by drying on vacuum pump at ~1 torr. Reaction temperatures are reported as the temperature of the bath surrounding the vessel unless otherwise stated.

<u>Materials.</u> Commercial reagents and solvents were were obtained from Adamas-beta, Aldrich Chemical Co., Alfa Aesar, Macklin and Energy Chemical and used as received with the following exceptions: THF, Et_2O and toluene were purified by refluxing over Nabenzophenone under positive argon pressure followed by distillation.^[1] The enone substrates were prepared according to literature procedure.^[2]

Instrumentation.

- Proton nuclear magnetic resonance (¹H NMR) spectra were recorded with Bruker AV 400 MHz spectrometers. Proton chemical shifts are reported in parts per million (δ scale), and are referenced using residual protium in the NMR solvent (DMSO-d⁶: δ 2.54 (DMSO)). Data are reported as follows: chemical shift [multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br s = broad singlet), coupling constant(s) (Hz), integration].
- Carbon-13 nuclear magnetic resonance (¹³C NMR) spectra were recorded with Bruker AV 400 MHz spectrometers. Carbon chemical shifts are reported in parts per million (δ scale), and are referenced using the carbon resonances of the solvent (δ 39.6 (DMSO)). Data are reported as follows: chemical shift [multiplicity (if not singlet), assignment (C_q = fully substituted carbon)].
- High resolution mass spectra (HRMS) were recorded on a Waters SYNAPT G2 using an electrospray (ESI) ionization source.

2. General Procedure for the Optimization of the Reaction Conditions

A dried glass tube was charged with 1-benzyl-4-benzylidenepyrrolidine-2,3-dione **1a** (0.1 mmol, 27.7 mg) and malononitrile **2a** (0.11 mmol, 7.3 mg) in an indicated solvent (0.1 M, 1 mL). Amine catalyst **3** (catalyst loading shown in Table 1 in the paper) was added with a syringe, and the reaction was sealed with a Teflon cap and stirred at room temperature for 5 to 30 minutes. When the reaction was complete, the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel (methylene dichloride/methanol = 20:1) to afford the corresponding bicyclic 4*H*-pyrane **4a**. Exceptionally, product **4a** could be directly obtained and purified by simple filtration (filtered, washed with the corresponding solvent and dried under vacuum oven) when ethanol or water was used as the reaction medium.

3. General Procedure for the Synthesis of multi-substituted bicyclic 4H-pyrane 4

A dried glass tube was charged with pyrrolidine-2,3-dione 1 (0.2 mmol) and malononitrile 2 (0.22 mmol) in EtOH or water (0.1 M, 2 mL). Amine catalyst 3a (0.02 mmol, 1.4 mg) was added with a syringe, and the reaction was sealed with a Teflon cap and stirred at room temperature for about 15 minutes. When the reaction was complete, the reaction mixture was filtered and washed with the mother liquid and 2 mL fresh ethanol or hot water to afford the corresponding bicyclic 4*H*-pyrane 4a, which was dried under vacuum oven and further analyzed by ¹H-NMR, ¹³C-HMR, HRMS, *etc.*

2-amino-6-benzyl-7-oxo-4-phenyl-4,5,6,7-tetrahydropyrano[2,3-c]pyrrole-3-carbonitrile 4a

Prepared according to the general procedure using 1-benzyl-4-benzylidenepyrrolidine-2,3dione **1a** (55.4 mg, 0.2 mmol, 1.0 equiv) and malononitrile **2** (14.5 mg, 0.22 mmol, 1.1 equiv). Purification of the crude product via simple filtration delivered **4a** as a white solid with 96% yield when ethanol as the reaction medium (with 82% yield when water as the reaction medium).

Characterization data for the product **4a**:

¹**H NMR (400 MHz, DMSO-d⁶):** δ (ppm): 7.41 – 7.29 (m, 5H), 7.27 – 7.25 (m, 2H), 7.22 – 7.19 (m, 4H), 4.66 (d, J = 15.2 Hz, 1H), 4.55 (s, 1H), 4.41 (d, J = 15.2 Hz, 1H), 3.85 (d, J = 19.2 Hz, 1H), 3.40 (d, J = 19.2 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d⁶): δ (ppm): 162.4, 161.1, 142.5, 139.4, 137.7, 129.3, 129.1, 128.1, 128.0, 127.9, 127.8, 126.5, 120.5, 56.1, 47.4, 45.8, 39.0

HR-MS (ESI): m/z calculated for C₂₁H₁₇N₃O₂Na⁺: 366.1218, found: 366.1227.

2-amino-6-(4-methoxybenzyl)-7-oxo-4-phenyl-4,5,6,7-tetrahydropyrano[2,3-c]pyrrole-3-carbonitrile 4b

Prepared according to the general procedure using 4-benzylidene-1-(4-methoxybenzyl) pyrrolidine-2,3-dione **1b** (61.4 mg, 0.2 mmol, 1.0 equiv) and malononitrile **2** (14.5 mg, 0.22 mmol, 1.1 equiv). Purification of the crude product via simple filtration delivered **4b** as a white solid with 90% yield when ethanol as the reaction medium.

Characterization data for the product 4b:

¹**H** NMR (400 MHz, DMSO-d⁶): δ (ppm): 7.38 – 7.34 (m, 2H), 7.29 – 7.25 (m, 1H), 7.22 – 7.20 (m, 2H), 7.13 – 7.11 (m, 4H), 6.87 (d, J = 8.4 Hz, 2H), 4.54 (d, J = 14.8 Hz, 1H), 4.29 (d, J = 14.8 Hz, 1H), 3.78 (d, J = 19.2 Hz, 1H), 3.71 (s, 1H), 3.32 (d, J = 19.2 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d⁶): δ (ppm): 162.2, 161.1, 159.1, 142.5, 139.4, 129.7, 129.5, 129.3, 128.0, 127.9, 126.4, 120.5, 114.5, 56.1, 55.5, 47.1, 45.2, 39.0

HR-MS (ESI): m/z calculated for C₂₂H₁₉N₃O₃Na⁺: 396.1324, found: 396.1321.

2-amino-6-benzyl-4-(4-bromophenyl)-7-oxo-4,5,6,7-tetrahydropyrano[2,3-c]pyrrole-3-carbonitrile 4c

Prepared according to the general procedure using 1-benzyl-4-(4-bromo-benzylidene) pyrrolidine-2,3-dione 1c (71.2 mg, 0.2 mmol, 1.0 equiv) and malononitrile 2 (14.5 mg, 0.22 mmol, 1.1 equiv). Purification of the crude product via simple filtration delivered 4c as a

white solid with 85% yield when ethanol as the reaction medium (with 92% yield when water as the reaction medium).

Characterization data for the product **4c**:

¹**H** NMR (400 MHz, DMSO-d⁶): δ (ppm): 7.59 (d, J = 8.4 Hz, 2H), 7.38 – 7.34 (m, 2H), 7.32 – 7.28 (m, 1H), 7.25 – 7.21 (m, 6H), 4.69 (d, J = 15.2 Hz, 1H), 4.57 (s, 1H), 4.38 (d, J = 15.2 Hz, 1H), 3.84 (d, J = 19.2 Hz, 1H), 3.44 (d, J = 19.2 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d⁶): δ (ppm): 161.8, 160.7, 141.4, 139.0, 137.1, 131.7, 129.9, 128.6, 127.7, 127.4, 125.4, 120.6, 119.9, 55.2, 46.8, 45.4, 37.9

HR-MS (ESI): m/z calculated for C₂₁H₁₆BrN₃O₂Na⁺: 444.0324, found: 444.0323.

2-amino-6-benzyl-4-(4-chlorophenyl)-7-oxo-4,5,6,7-tetrahydropyrano[2,3-c]pyrrole-3-arbonitrile 4d

Prepared according to the general procedure using 1-benzyl-4-(4-chloro-benzylidene) pyrrolidine-2,3-dione **1d** (62.2 mg, 0.2 mmol, 1.0 equiv) and malononitrile **2** (14.5 mg, 0.22 mmol, 1.1 equiv). Purification of the crude product via simple filtration delivered **4d** as a white solid with 93% yield when ethanol as the reaction medium (with 88% yield when water as the reaction medium).

Characterization data for the product **4d**:

¹**H** NMR (400 MHz, DMSO-d⁶): δ (ppm): 7.45 (d, J = 8.4 Hz, 2H), 7.38 – 7.34 (m, 2H), 7.31 – 7.29 (m, 3H), 7.23 – 7.20 (m, 4H), 4.68 (d, J = 15.2 Hz, 1H), 4.58 (s, 1H), 4.38 (d, J = 15.2 Hz, 1H), 3.84 (d, J = 18.8 Hz, 1H), 3.43 (d, J = 18.8 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d⁶): δ (ppm): 161.9, 160.8, 141.1, 139.1, 137.2, 132.2, 129.6, 128.9, 128.8, 127.8, 127.5, 125.6, 120.0, 55.4, 46.9, 45.5, 38.0

HR-MS (ESI): m/z calculated for C₂₁H₁₆ClN₃O₂Na⁺: 400.0829, found: 400.0828.

2-amino-6-benzyl-4-(4-fluorophenyl)-7-oxo-4,5,6,7-tetrahydropyrano[2,3-c]pyrrole-3-carbonitrile 4e

Prepared according to the general procedure using 1-benzyl-4-(4-fluorobenzylidene) pyrrolidine-2,3-dione **1e** (71.2 mg, 0.2 mmol, 1.0 equiv) and malononitrile **2** (14.5 mg, 0.22 mmol, 1.1 equiv). Purification of the crude product via simple filtration delivered **4e** as a white solid with 80% yield when ethanol as the reaction medium.

Characterization data for the product **4e***:*

¹**H** NMR (400 MHz, DMSO-d⁶): δ (ppm): 7.38 – 7.28 (m, 5H), 7.24 – 7.20 (m, 6H), 4.68 (d, J = 15.2 Hz, 1H), 4.58 (s, 1H), 4.39 (d, J = 15.2 Hz, 1H), 3.85 (d, J = 19.2 Hz, 1H), 3.42 (d, J = 19.2 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d⁶): δ (ppm): 162.7, 161.9, 160.7, 160.3, 139.0, 138.4, 138.3, 137.3, 129.7, 129.6, 128.8, 127.8, 127.5, 125.9, 120.1, 115.8, 115.6, 55.7, 46.9, 45.5, 37.9 HR-MS (ESI): m/z calculated for C₂₁H₁₆FN₃O₂Na⁺: 384.1124, found: 384.1125.

2-amino-6-benzyl-4-(4-nitrophenyl)-7-oxo-4,5,6,7-tetrahydropyrano[2,3-c]pyrrole-3-carbonitrile 4f

Prepared according to the general procedure using 1-benzyl-4-(4-nitrobenzylidene) pyrrolidine-2,3-dione **1f** (64.4 mg, 0.2 mmol, 1.0 equiv) and malononitrile **2** (14.5 mg, 0.22 mmol, 1.1 equiv). Purification of the crude product via simple filtration delivered **4f** as a white solid with 72% yield when ethanol as the reaction medium. (with 77% yield when water as the reaction medium).

Characterization data for the product **4f***:*

¹**H** NMR (400 MHz, DMSO-d⁶): δ (ppm): 8.27 (d, J = 8.8 Hz, 2H), 7.59 (d, J = 8.8 Hz, 2H), 7.38 – 7.28 (m, 5H), 7.23 – 7.21 (m, 2H), 4.78 (s, 1H), 4.70 (d, J = 15.2 Hz, 1H), 4.37 (d, J = 15.2 Hz, 1H), 3.88 (d, J = 19.2 Hz, 1H), 3.45 (d, J = 19.2 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d⁶): δ (ppm): 161.8, 161.0, 149.5, 147.0, 139.5, 137.2, 129.2, 128.8, 127.8, 127.5, 124.7, 124.2, 119.8, 54.7, 46.9, 45.5, 38.4

HR-MS (ESI): m/z calculated for C₂₁H₁₆N₄O₄Na⁺: 411.1069, found: 411.1068.

2-amino-6-benzyl-7-oxo-4-(p-tolyl)-4,5,6,7-tetrahydropyrano[2,3-c]pyrrole-3-carbonitrile 4g

Prepared according to the general procedure using 1-benzyl-4-(4-methylbenzylidene) pyrrolidine-2,3-dione 1g (58.2 mg, 0.2 mmol, 1.0 equiv) and malononitrile 2 (14.5 mg, 0.22 mmol, 1.1 equiv). Purification of the crude product via simple filtration delivered 4g as a white solid with 85% yield when ethanol as the reaction medium. (with 82% yield when water as the reaction medium).

Characterization data for the product 4g:

¹**H** NMR (400 MHz, DMSO-d⁶): δ (ppm): 7.38 – 7.27 (m, 3H), 7.22 – 7.18 (m, 4H), 7.15 – 7.12 (m, 4H), 4.64 (d, J = 15.2 Hz, 1H), 4.50 (s, 1H), 4.41 (d, J = 15.2 Hz, 1H), 3.83 (d, J = 19.2 Hz, 1H), 3.40 (d, J = 19.2 Hz, 1H), 2.31 (s, 3H).

¹³C NMR (100 MHz, DMSO-d⁶): δ (ppm): 161.9, 160.6, 139.1, 138.7, 137.2, 136.6, 129.4, 128.6, 127.7, 127.4, 126.2, 120.0, 55.8, 46.8, 45.3, 38.1, 20.6

HR-MS (ESI): m/z calculated for C₂₂H₁₉N₃O₂Na⁺: 380.1375, found: 380.1375.

2-amino-6-benzyl-4-(4-methoxyphenyl)-7-oxo-4,5,6,7-tetrahydropyrano[2,3-c]pyrrole-3-carbonitrile 4h

Prepared according to the general procedure using 1-benzyl-4-(4-methoxybenzylidene) pyrrolidine-2,3-dione **1h** (61.4 mg, 0.2 mmol, 1.0 equiv) and malononitrile **2** (14.5 mg, 0.22 mmol, 1.1 equiv). Purification of the crude product via simple filtration delivered **4h** as a white solid with 82% yield when ethanol as the reaction medium.

Characterization data for the product **4h**:

¹**H** NMR (400 MHz, DMSO-d⁶): δ (ppm): 7.38 – 7.27 (m, 3H), 7.23 – 7.14 (m, 6H), 6.94 (d, J = 8.4 Hz, 2H), 4.65 (d, J = 15.2 Hz, 1H), 4.49 (s, 1H), 4.41 (d, J = 15.2 Hz, 1H), 3.83 (d, J = 19.2 Hz, 1H), 3.77 (s, 3H), 3.40 (d, J = 19.2 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d⁶): δ (ppm): 162.0, 160.6, 158.6, 138.8, 137.3, 134.2, 128.8, 128.7, 127.8, 127.5, 126.5, 120.2, 114.3, 56.1, 55.2, 47.0, 45.5, 37.8

HR-MS (ESI): m/z calculated for C₂₂H₁₉N₃O₃Na⁺: 396.1324, found: 396.1324.

$\underline{2\text{-}amino\text{-}6\text{-}benzyl\text{-}4\text{-}(4\text{-}hydroxyphenyl)\text{-}7\text{-}oxo\text{-}4, 5, 6, 7\text{-}tetrahydropyrano[2, 3\text{-}c]pyrrole\text{-}3\text{-}carbonitrile\ 4i$

Prepared according to the general procedure using 1-benzyl-4-(4-hydroxybenzylidene) pyrrolidine-2,3-dione **1i** (58.6 mg, 0.2 mmol, 1.0 equiv) and malononitrile **2** (14.5 mg, 0.22 mmol, 1.1 equiv). Purification of the crude product via simple filtration delivered **4i** as a white solid with 88% yield when ethanol as the reaction medium. (with 78% yield when water as the reaction medium).

Characterization data for the product 4i:

¹**H NMR (400 MHz, DMSO-d⁶):** δ (ppm): 9.43 (s, 1H), 7.37 – 7.26 (m, 3H), 7.21 – 7.19 (m, 2H), 7.08 (br s, 2H), 7.03 (d, J = 8.4 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 4.64 (d, J = 15.2 Hz,

1H), 4.41 (s, 1H), 4.40 (d, *J* = 15.2 Hz, 1H), 3.81 (d, *J* = 19.2 Hz, 1H), 3.38 (d, *J* = 19.2 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d⁶): δ (ppm): 162.0, 160.4, 156.6, 138.5, 137.2, 132.4, 128.6, 128.5, 127.6, 127.4, 126.7, 120.1, 115.5, 56.2, 46.8, 45.3, 37.7
HR-MS (ESI): m/z calculated for C₂₁H₁₇N₃O₃Na⁺: 382.1168, found: 382.1164.

2-amino-6-benzyl-4-(3-bromophenyl)-7-oxo-4,5,6,7-tetrahydropyrano[2,3-c]pyrrole-3-carbonitrile 4j

Prepared according to the general procedure using 1-benzyl-4-(3-bromobenzylidene) pyrrolidine-2,3-dione 1j (71.2 mg, 0.2 mmol, 1.0 equiv) and malononitrile 2 (14.5 mg, 0.22 mmol, 1.1 equiv). Purification of the crude product via simple filtration delivered 4j as a white solid with 80% yield when ethanol as the reaction medium (with 83% yield when water as the reaction medium).

Characterization data for the product 4j:

¹**H** NMR (400 MHz, DMSO-d⁶): δ (ppm): 7.54 – 7.47 (m, 2H), 7.39 – 7.34 (m, 3H), 7.32 – 7.21 (m, 6H), 4.70 (d, J = 15.2 Hz, 1H), 4.59 (s, 1H), 4.38 (d, J = 15.2 Hz, 1H), 3.85 (d, J = 19.2 Hz, 1H), 3.45 (d, J = 19.2 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d⁶): δ (ppm): 161.9, 160.9, 144.9, 139.2, 137.3, 131.2, 130.5, 130.4, 128.8, 127.8, 127.5, 126.9, 125.3, 122.2, 120.0, 55.2, 46.9, 45.5, 38.2

HR-MS (ESI): m/z calculated for C₂₁H₁₆BrN₃O₂Na⁺: 444.0324, found: 444.0326

2-amino-6-benzyl-4-(3-chlorophenyl)-7-oxo-4,5,6,7-tetrahydropyrano[2,3-c]pyrrole-3-carbonitrile 4k

Prepared according to the general procedure using 1-benzyl-4-(3-chlorobenzylidene) pyrrolidine-2,3-dione **1k** (62.2 mg, 0.2 mmol, 1.0 equiv) and malononitrile **2** (14.5 mg, 0.22 mmol, 1.1 equiv). Purification of the crude product via simple filtration delivered **4k** as a white solid with 87% yield when ethanol as the reaction medium (with 90% yield when water as the reaction medium).

Characterization data for the product 4k:

¹**H** NMR (400 MHz, DMSO-d⁶): δ (ppm): 7.46 – 7.30 (m, 6H), 7.26 – 7.21 (m, 5H), 4.70 (d, J = 15.2 Hz, 1H), 4.60 (s, 1H), 4.38 (d, J = 15.2 Hz, 1H), 3.86 (d, J = 19.2 Hz, 1H), 3.45 (d, J = 19.2 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d⁶): δ (ppm): 161.8, 160.8, 144.5, 139.1, 137.1, 133.4, 130.8, 128.6, 127.6, 127.5, 127.4, 126.4, 125.2, 119.9, 55.0, 46.8, 45.3, 38.1
HR-MS (ESI): *m/z* calculated for C₂₁H₁₆ClN₃O₂Na⁺: 400.0829, found: 400.0830.

 $\underline{2\text{-}amino\text{-}6\text{-}benzyl\text{-}4\text{-}(2\text{-}chlorophenyl)\text{-}7\text{-}oxo\text{-}4, 5, 6, 7\text{-}tetrahydropyrano[2, 3\text{-}c]pyrrole\text{-}3\text{-}carbonitrile\text{-}4l}$

Prepared according to the general procedure using 1-benzyl-4-(2-chlorobenzylidene) pyrrolidine-2,3-dione **11** (62.2 mg, 0.2 mmol, 1.0 equiv) and malononitrile **2** (14.5 mg, 0.22 mmol, 1.1 equiv). Purification of the crude product via simple filtration delivered **41** as a white solid with 85% yield when ethanol as the reaction medium.

Characterization data for the product **4**I:

¹**H** NMR (400 MHz, DMSO-d⁶): δ (ppm): 7.49 – 7.47 (m, 1H), 7.44 – 7.32 (m, 5H), 7.30 – 7.26 (m, 3H), 7.22 – 7.20 (m, 2H), 5.01 (s, 1H), 4.64 (d, *J* = 15.2 Hz, 1H), 4.43 (d, *J* = 15.2 Hz, 1H), 3.92 (d, *J* = 19.2 Hz, 1H), 3.46 (d, *J* = 19.2 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d⁶): δ (ppm): 161.7, 161.2, 139.4, 138.5, 137.1, 132.2, 130.4, 129.7, 129.3, 128.6, 128.1, 127.6, 127.4, 124.7, 119.7, 56.0, 54.2, 46.9, 45.3

HR-MS (ESI): m/z calculated for C₂₁H₁₆ClN₃O₂Na⁺: 400.0829, found: 400.0829.

2-amino-6-benzyl-4-(2-methoxyphenyl)-7-oxo-4,5,6,7-tetrahydropyrano[2,3-c]pyrrole-3-carbonitrile 4m

Prepared according to the general procedure using 1-benzyl-4-(2-methoxybenzylidene) pyrrolidine-2,3-dione 1m (61.4 mg, 0.2 mmol, 1.0 equiv) and malononitrile 2 (14.5 mg, 0.22 mmol, 1.1 equiv). Purification of the crude product via simple filtration delivered 4m as a white solid with 78% yield when ethanol as the reaction medium.

Characterization data for the product **4m**:

¹**H** NMR (400 MHz, DMSO-d⁶): δ (ppm): 7.38 – 7.27 (m, 4H), 7.21 – 7.16 (m, 5H), 7.06 – 6.98 (m, 2H), 4.84 (s, 1H), 4.60 (d, J = 15.2 Hz, 1H), 4.46 (d, J = 15.2 Hz, 1H), 3.89 (d, J = 19.2 Hz, 1H), 3.79 (s, 3H), 3.45 (d, J = 19.2 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d⁶): δ (ppm): 162.0, 161.5, 156.6, 139.0, 137.3, 129.3, 128.8, 128.7, 128.5, 127.6, 127.5, 126.3, 121.0, 120.2, 111.4, 55.6, 54.2, 47.4, 45.4, 32.5 HR-MS (ESI): m/z calculated for C₂₂H₁₉N₃O₃Na⁺: 396.1324, found: 396.1325.

<u>2-amino-6-benzyl-4-(3,4-dimethoxyphenyl)-7-oxo-4,5,6,7-tetrahydropyrano[2,3-c]pyrrole-3-carbo-nitrile 4n</u>

Prepared according to the general procedure using 1-benzyl-4-(3,4-dimethoxybenzylidene) pyrrolidine-2,3-dione 1n (67.4 mg, 0.2 mmol, 1.0 equiv) and malononitrile 2 (14.5 mg, 0.22 mmol, 1.1 equiv). Purification of the crude product via simple filtration delivered 4n as a white solid with 70% yield when ethanol as the reaction medium.

Characterization data for the product **4n***:*

¹**H** NMR (400 MHz, DMSO-d⁶): δ (ppm): 7.38 – 7.27 (m, 3H), 7.23 – 7.20 (m, 2H), 7.13 (br s, 2H), 6.96 (d, J = 8.0 Hz, 1H), 6.81 – 6.76 (m, 2H), 4.64 (d, J = 15.2 Hz, 1H), 4.48 (s, 1H), 4.44 (d, J = 15.2 Hz, 1H), 3.84 (d, J = 19.2 Hz, 1H), 3.76 (s, 3H), 3.75 (s, 3H), 3.44 (d, J = 19.2 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d⁶): δ (ppm): 162.0, 160.5, 148.8, 148.0, 138.6, 137.2, 134.4, 128.6, 127.6, 127.4, 126.3, 120.1, 119.6, 111.9, 110.9, 55.8, 55.5, 55.4, 46.8, 45.3, 38.1 HR-MS (ESI): m/z calculated for C₂₃H₂₁N₃O₄Na⁺: 426.1423, found: 426.1423.

<u>2-amino-6-benzyl-4-(3-hydroxy-4-methoxyphenyl)-7-oxo-4,5,6,7-tetrahydropyrano[2,3-c]pyrrole-3-carbonitrile 40</u>

Prepared according to the general procedure using 1-benzyl-4-(3-hydroxy-4-methoxy-benzylidene)-pyrrolidine-2,3-dione **10** (64.6 mg, 0.2 mmol, 1.0 equiv) and malononitrile **2** (14.5 mg, 0.22 mmol, 1.1 equiv). Purification of the crude product via simple filtration delivered **40** as a white solid with 62% yield when ethanol as the reaction medium.

Characterization data for the product **40***:*

¹**H NMR (400 MHz, DMSO-d⁶):** δ (ppm): 9.09 (s, 1H), 7.38 – 7.27 (m, 3H), 7.23 – 7.21 (m, 2H), 7.12 (br s, 2H), 6.89 (d, J = 8.0 Hz, 1H), 6.66 – 6.62 (m, 2H), 4.65 (d, J = 15.2 Hz, 1H), 4.41 (d, J = 15.2 Hz, 1H), 4.38 (s, 1H), 3.83 (d, J = 19.2 Hz, 1H), 3.77 (s, 3H), 3.42 (d, J = 19.2 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d⁶): δ (ppm): 162.0, 160.6, 147.1, 146.9, 138.6, 137.3, 134.8, 128.8, 127.8, 127.5, 126.8, 120.2, 118.2, 114.6, 112.3, 56.2, 55.6, 47.0, 45.4, 38.0
HR-MS (ESI): *m/z* calculated for C₂₂H₁₉N₃O₄Na⁺: 412.1273, found: 412.1269.

Prepared according to the general procedure using (E)-1-benzyl-4-(2,4-dichlorobenzylidene) pyrrolidine-2,3-dione 1p (69.2 mg, 0.2 mmol, 1.0 equiv) and malononitrile 2 (14.5 mg, 0.22 mmol, 1.1 equiv). Purification of the crude product via simple filtration delivered 4p as a white solid with 81% yield when ethanol as the reaction medium.

Characterization data for the product **4p**:

¹**H** NMR (400 MHz, DMSO-d⁶): δ (ppm): 7.67 (d, J = 2.0 Hz, 1H), 4.64 (dd, J = 8.4 Hz, J = 2.0 Hz, 1H), 7.42 (d, J = 8.4 Hz, 1H), 7.38 – 7.28 (m, 5H), 7.23 – 7.21 (m, 2H), 5.01 (s, 1H), 4.67 (d, J = 15.2 Hz, 1H), 4.41 (d, J = 15.2 Hz, 1H), 3.91 (d, J = 19.2 Hz, 1H), 3.52 (d, J = 19.2 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d⁶): δ (ppm): 161.6, 161.2, 139.6, 137.1, 133.1, 132.9, 131.9, 129.1, 128.6, 128.3, 127.6, 127.4, 124.2, 119.6, 56.0, 53.9, 46.9, 45.4
HR-MS (ESI): m/z calculated for C₂₁H₁₅Cl₂N₃O₂Na⁺: 434.0439, found: 434.0434.

2-amino-6-benzyl-4-(naphthalen-2-yl)-7-oxo-4,5,6,7-tetrahydropyrano[2,3-c]pyrrole-3-carbonitrile 4q

Prepared according to the general procedure using 1-benzyl-4-(naphthalen-2-ylmethylene) pyrrolidine-2,3-dione 1q (65.4 mg, 0.2 mmol, 1.0 equiv) and malononitrile 2 (14.5 mg, 0.22 mmol, 1.1 equiv). Purification of the crude product via simple filtration delivered 4q as a white solid with 83% yield when ethanol as the reaction medium. (with 75% yield when water as the reaction medium).

Characterization data for the product 4q:

¹**H NMR (400 MHz, DMSO-d⁶):** δ (ppm): 7.97 – 7.93 (m, 3H), 7.80 (s, 1H), 7.58 – 7.52 (m, 2H), 7.43 – 7.40 (m, 1H), 7.36 – 7.27 (m, 3H), 7.25 (br s, 2H), 7.21 – 7.19 (m, 2H), 4.73 (s, 1H), 4.67 (d, *J* = 15.2 Hz, 1H), 4.37 (d, *J* = 15.2 Hz, 1H), 3.88 (d, *J* = 19.2 Hz, 1H), 3.42 (d, *J* = 19.2 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d⁶): δ (ppm): 161.9, 160.7, 139.4, 139.0, 137.1, 132.9, 132.4, 128.7, 128.6, 127.7, 127.6, 127.5, 127.4, 126.4, 126.2, 126.1, 125.9, 125.5, 120.1, 55.6, 46.9, 45.3, 38.7

HR-MS (ESI): m/z calculated for C₂₅H₁₉N₃O₂Na⁺: 416.1375, found: 416.1372.

Prepared according to the general procedure using 1-benzyl-4-(thiophen-2-ylmethylene) pyrrolidine-2,3-dione 1r (56.6 mg, 0.2 mmol, 1.0 equiv) and malononitrile 2 (14.5 mg, 0.22 mmol, 1.1 equiv). Purification of the crude product via simple filtration delivered 4r as a white solid with 96% yield when ethanol as the reaction medium. (with 84% yield when water as the reaction medium).

Characterization data for the product 4r:

¹**H** NMR (400 MHz, DMSO-d⁶): δ (ppm): 7.51 – 7.49 (m, 1H), 7.39 – 7.29 (m, 3H), 7.25 – 7.22 (m, 4H), 7.03 – 7.00 (m, 2H), 4.93 (s, 1H), 4.66 (d, J = 15.2 Hz, 1H), 4.47 (d, J = 15.2 Hz, 1H), 3.91 (d, J = 19.2 Hz, 1H), 3.57 (d, J = 19.2 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d⁶): δ (ppm): 162.2, 160.9, 147.3, 139.1, 137.6, 129.2, 128.1, 127.9, 127.6, 126.5, 126.3, 125.8, 120.3, 56.8, 47.4, 45.9, 34.2

HR-MS (ESI): m/z calculated for C₁₉H₁₅N₃O₂SNa⁺: 372.0783, found: 372.0781.

4. Crystal data and structure refinement for the representative product 4l

Identification code	41
Empirical formula	$C_{21}H_{16}ClN_3O_2$
Formula weight	377.82
Temperature/K	294.39(10)
Crystal system	monoclinic
Space group	C2/c

a/Å	19.0108(8)	
b/Å	10.0865(3)	
c/Å	20.7318(9)	
α/°	90	
β/°	116.291(5)	
γ/ ^o	90	
Volume/Å ³	3564.1(3)	
Z	8	
$\rho_{calc}g/cm^3$	1.408	
μ/mm^{-1}	2.080	
F(000)	1568.0	
Crystal size/mm ³	$0.3 \times 0.2 \times 0.1$	
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)	
2Θ range for data collection/° 9.516 to 134.13		
Index ranges	$-22 \le h \le 19, -12 \le k \le 9, -24 \le l \le 23$	
Reflections collected	8044	
Independent reflections	3175 [$R_{int} = 0.0290, R_{sigma} = 0.0315$]	
Data/restraints/parameters	3175/0/252	
Goodness-of-fit on F ²	1.034	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0567, wR_2 = 0.1556$	
Final R indexes [all data]	$R_1 = 0.0647, wR_2 = 0.1655$	
Largest diff. peak/hole / e Å ⁻³ 0.36/-0.29		

5. Procedure for in vitro minimum inhibitory concentration assay.

➤ <u>Motivation of this study</u>: We were inspired by the 4*H*-pyrane core structure of the products, which has already been demonstrated to show antibacterial activity ^[3]. Moreover, bicyclic frameworks with lactam functionalities are widely existed in the framework of many clinically used antibiotics such as cephalosporins. Therefore, we expected the synthesized novel bicyclic 4*H*-pyranes with γ-lactam functionalities would also have potential antibacterial bioactivity.

Detailed work procedure: The minimum inhibitory concentration (MIC) of each compound was determined using a standard broth microdilution assay.^[4] The procedure is that MIC data was determined by a microdilution method, following the National Committee for Clinical Laboratory Standards (NCCLS) (now called the Clinical Laboratory Standards Institute [CLSI]) The stock solutions of test compounds were diluted to give a serial, 2-fold series, yielding final chemical concentrations that ranged from 128 to 16µg/mL. The MIC was defined as the lowest concentration of the chemical that inhibited the development of visible bacterial growth after an incubation for 16 h at 37°C.

6. References and notes

- a) E. Krell, *Handbook of Laboratory Distillation*, Elseriver Publishing Company, Amsterdam-London-New York, **1963**; b) M. J. Rosengart, *The Technique of Distillation and Rectification in the Laboratory*, VEB Verlag Technik, Berlin, **1954**; c) H. Stage Columns for laboratory distillation, Angew. Chem., **1947**, *B19*, 175.
- [2] P. L. Southwick, E. F. Barnas, J. Org. Chem., 1962, 27, 98.
- [3] M. Kidwai, S. Saxena, M. K. R. Khan, S. S. Thukral, *Bioorg. Med. Chem. Lett.*, **2005**, *15*, 4295.
- [4] L. Ouyang, Y. Huang, Y. Zhao, G. He, Y. Xie, J. Liu, J. He, B. Liu, Y. Wei, *Bioorg. Med. Chem. Lett.*, 2012, 22, 3044.

7. NMR Spectra of the multi-substituted bicyclic 4H-pyranes

-0.5

S 27

