Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016 Supporting Information of

Mg²⁺ ion as a tuner for colorimetric sensing of glyphosate with improved sensitivity *via* the aggregation of 2-mercapto-5-nitrobenzimidazole capped silver nanoparticles

Karuna A. Rawat^a, Rutuben P. Majithiya^a, Jigneshkumar V. Rohit^a, Hirakendu Basu^b, Rakesh Kumar Singhal^b, and Suresh Kumar Kailasa^{a*}

^aDepartment of Applied Chemistry, S. V. National Institute of Technology, Surat-395 007, India ^bAnalytical Chemistry Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085, India *Corresponding author, Phone: +91-261-2201730; Fax: +91-261-2227334 E-mail: sureshkumarchem@gmail.com; skk@ashd.svnit.ac.in

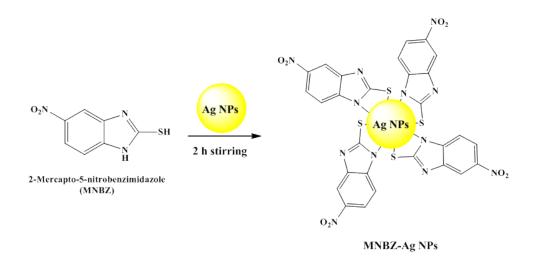


Figure S1. Schematic representation for preparation of MNBZ-Ag NPs.

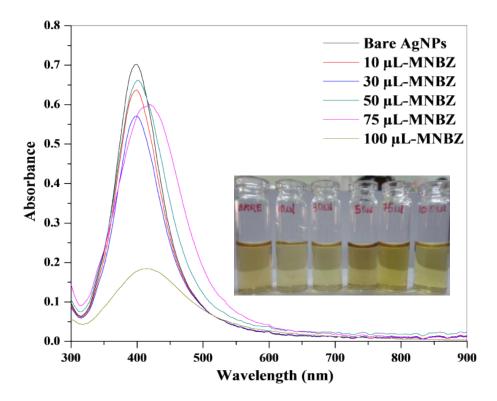
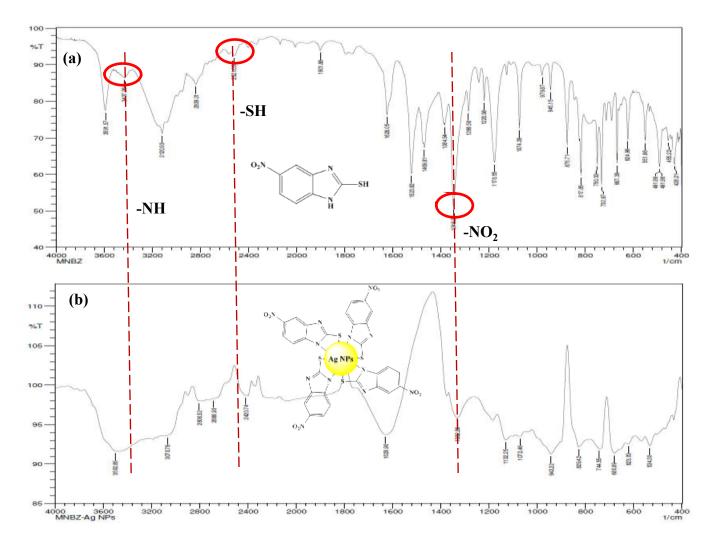
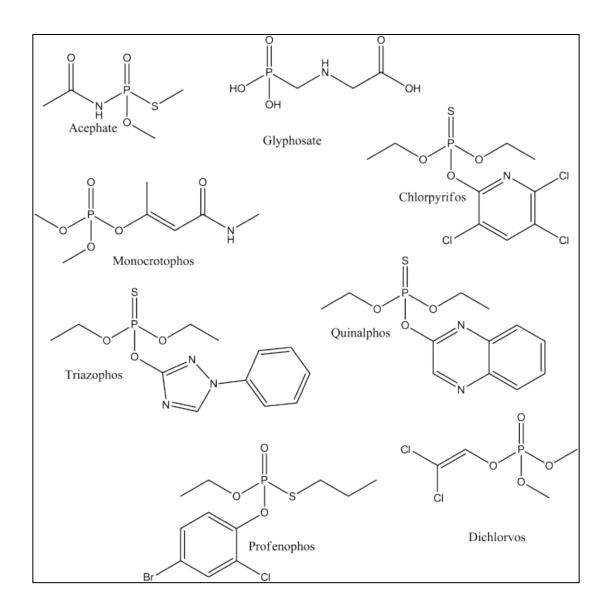
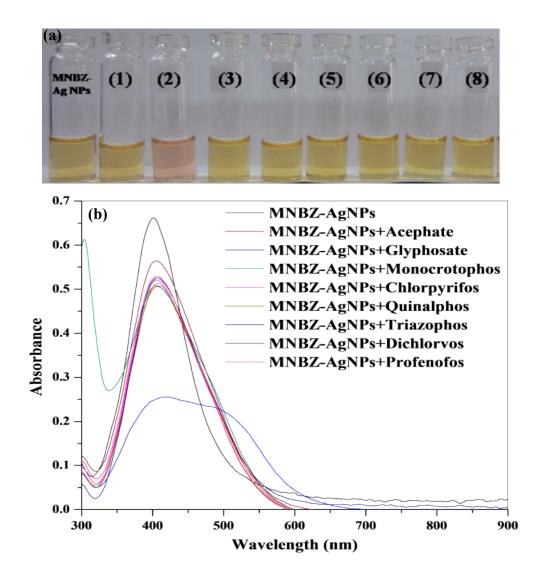
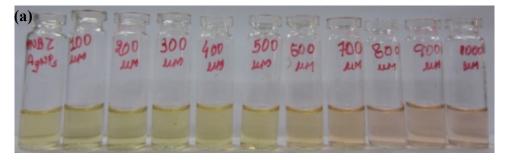


Figure S2. UV-visible absorption spectra of Ag NPs at different volumes of MNBZ ($10 - 100 \mu$ L).


Figure S3. FT-IR spectra of (a) pure MNBZ and (b) MNBZ–Ag NPs.

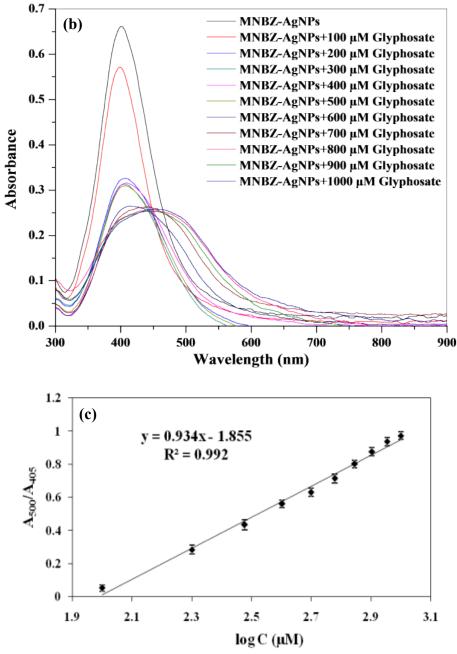


Figure S4. Structures of organophosphorus pesticides which are used for selectivity study using MNBZ-Ag NPs as colorimetric probe.

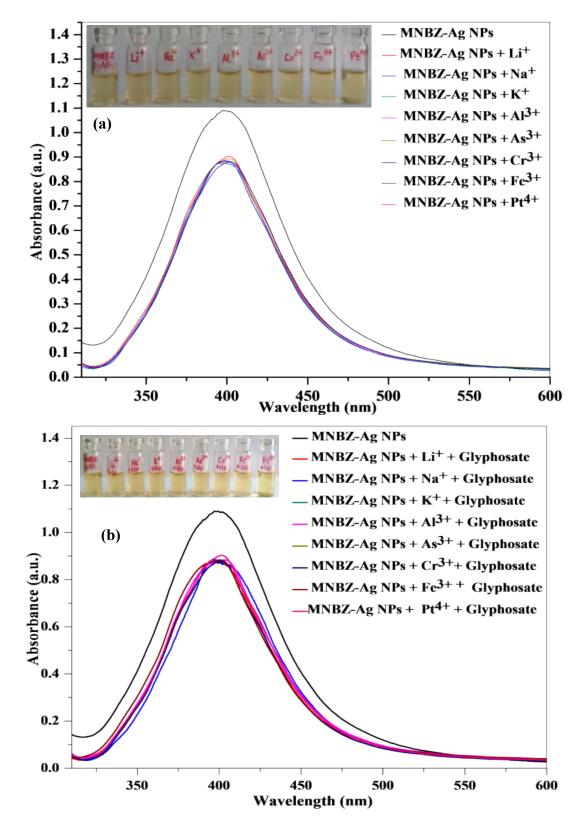


Figure S5. (a) Photographic image and (b) UV-visible spectra of MNBZ-Ag NPs in presence of organophosphorus pesticides (1: acephate, 2: glyphosate, 3: monocrotophos, 4: chlorpyriphos, 5: quinalphos, 6: triazophos, 7: dichlorvos, 8: profenophos)

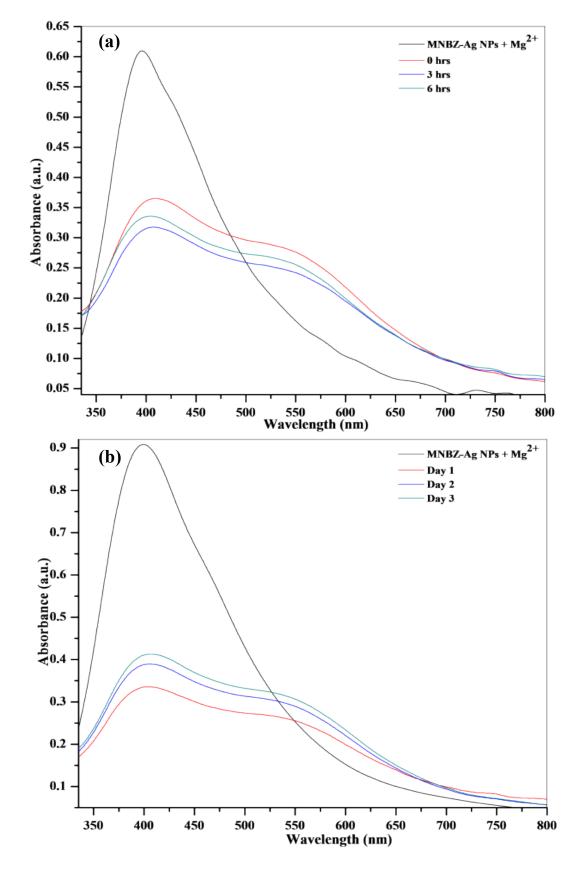


Figure S6. (a) Photographic image of MNBZ-Ag NPs solution upon the addition of glyphosate in the range of $100 - 1000 \,\mu\text{M}$ without Mg²⁺ ion. (b) UV-visible absorption spectra of MNBZ-Ag NPs solution upon the addition of glyphosate in the range of $100 - 1000 \,\mu\text{M}$ without Mg²⁺ ion. (c) A calibration plot of the SPR band shift relative to MNBZ-Ag NPs-Mg²⁺ ion (A₅₀₀/A₄₀₅) *versus* the logarithm of concentration of glyphosate in the range of $100 - 1000 \,\mu\text{M}$ at PBS pH 4.

Figure S7. (a) UV-visible absorption spectra of MNBZ-Ag NPs in the presence of various metal ions (monovalent metal ions - Li⁺, Na⁺, K⁺, trivalent metal ions - Al³⁺, As³⁺, Cr³⁺, Fe³⁺ and tetravalent metal ion - Pt⁺⁴, 50 μ M) without addition of glyphosate. (b) UV-visible absorption spectra of MNBZ-Ag NPs in the presence of glyphosate (10 μ M) using various metal ions (monovalent metal ions - Li⁺, Na⁺, K⁺, trivalent metal ions - Al³⁺, As³⁺, Cr³⁺, Fe³⁺ and tetravalent metal ions - Li⁺, Na⁺, K⁺, trivalent metal ions - Al³⁺, As³⁺, Cr³⁺, Fe³⁺ and tetravalent metal ion - Pt⁺⁴, 50 μ M) as tuners. Inset is the photographic images illustrating the corresponding colorimetric response.

Figure S8. UV-visible absorption spectra of MNBZ-Ag NPs in the presence of glyphosate (1000 nM) using Mg^{2+} ion as a tuner at (a) inter (for corn) and (b) intra -day (for potato).

Analyte	Solvent	Added	Intra-day					Inter-day			
		(nM)	Found (nM) ^a	Recover	Precisio	Accura	Found (nM) ^a	Recovery ^b	Precisio	Accurac	
				y ^b	n ^c	cy ^d			n ^c	y ^d	
Potato	Water	500	503±0.41	100.6	0.8	+0.6	501±0.01	100.3	1.8	+ 0.3	
		750	739±0.49	98.6	1.5	-1.4	753±0.01	99.7	1.3	+0.4	
		1000	999±0.01	99.9	1.3	-0.11	985±0.91	98.5	1.8	-0.4	
Corn	Water	500	518±0.44	103.7	1.3	+3.6	500±0.10	99.9	1.9	+1.1	
		750	749±0.99	99.9	1.9	-0.1	745±0.11	99.4	2.2	-0.6	
		1000	981±0.11	98.1	1.3	-1.9	1001±0.67	100.1	0.8	+0.1	
Potato	MeOH	500	498±0.61	99.6	1.2	+0.2	501±0.83	100.2	1.7	+0.3	
		750	750±0.42	100.0	1.2	+0.4	742±0.21	98.9	1.8	+0.3	
		1000	1004 ± 0.55	100.4	0.8	+0.9	998±0.61	99.8	1.8	-0.4	
Corn	MeOH	500	499±0.73	99.8	1.0	-0.1	508±0.24	101.6	0.5	+1.1	
		750	752±0.21	100.2	0.4	+0.3	749±0.05	99.9	0.1	-0.1	
		1000	1008 ± 0.90	100.8	0.9	+0.8	997±0.89	99.7	1.5	-0.3	
Potato	EtOH	500	421±0.31	84.8	1.1	-15.7	436±0.77	85.9	2.9	-12.7	
		750	671±0.12	89.5	2.7	-10.5	695±0.31	92.7	2.8	-10.5	
		1000	895±0.11	89.5	0.8	+10.5	889 ± 0.52	88.9	0.7	-11.1	
Corn in	EtOH	500	394±0.77	76.9	2.9	-21.1	374±0.24	73.2	0.8	-25.1	
		750	535±0.10	71.3	2.8	-28.7	576±0.39	76.8	1.1	-23.1	
		1000	725±0.21	72.5	1.3	-27.6	774±0.86	77.5	1.3	-22.5	

Table S1. Extraction efficiency of glyphosate and its recovery ranges from potato and corn using water, MeOH and EtOH as extracting solvents at inter- and intra- day using MNBZ-Ag NPs as a probe and Mg^{2+} ion as a tuner.

^aMean \pm standard deviation (n = 3). ^b % Recovery = (Found concentration/known concentration)×100,

^c Precision was calculated (RSD, %) from standard deviation/mean×100, ^dAccuracy was calculated from (found concentration–known concentration)/known concentration×100.