One-pot synthesis of various 2-amino-4H-chromene derivatives using highly active supported ionic liquid catalyst

Pankaj Sharma^a, Monika Gupta^a*, Rajni Kant^b, Vivek K. Gupta^b

^aDepartment of Chemistry, University of Jammu, Jammu-180006, India ^bDepartment of Physics and Electronics, University of Jammu, Jammu-180006, India *E-mail*: monika.gupta77@rediffmail.com*

Supplementary Information

Spectral data of some products

2-amino-6,6,8,8-tetrahydro-7,7-dimethyl-5-oxo-4-phenyl-4*H*-chromene-3-carbonitrile (entry 1, table 3)

¹H NMR (400 MHz, DMSO-d₆): δ 0.96 (s, 3H, CH₃), 1.06 (s, 3H, CH₃), 2.09-2.28 (m, 4H, 2 X CH₂), 4.17 (s, 1H, CH), 7.03 (s, 2H, NH₂) 7.14-7.29 (m, 5H, ArH).

¹³C NMR (100 MHz, DMSO-d₆): δ 27.2, 28.9, 32.2, 36.0, 40.3, 50.8, 58.8, 113.2, 120.2, 127.1, 127.7, 128.9, 145.2, 159.0, 163.0, 196.2.

MS: *m/z* 295 (M⁺).

Fig. S1 ¹H NMR of 2-amino-6,6,8,8-tetrahydro-7,7-dimethyl-5-oxo-4-phenyl-4*H*-chromene-3-carbonitrile

Fig. S2 ¹³C NMR of 2-amino-6,6,8,8-tetrahydro-7,7-dimethyl-5-oxo-4-phenyl-4*H*-chromene-3-carbonitrile

Fig. S3 Mass spectra of 2-amino-6,6,8,8-tetrahydro-7,7-dimethyl-5-oxo-4-phenyl-4*H*-chromene-3-carbonitrile

2-amino-4-(3-nitrophenyl)-6,6,8,8-tetrahydro-7,7-dimethyl-5-oxo-4*H*-chromene-3carbonitrile (entry 3, table 3)

¹H NMR (400 MHz, DMSO-d₆): δ 1.06 (s, 3H, CH₃), 1.14 (s, 3H, CH₃), 2.06-2.28 (m, 4H, 2 X CH₂), 4.51 (s, 1H, CH), 6.44 (s, 2H, NH₂), 7.61-8.11 (m, 4H, ArH).

¹³C NMR (100 MHz, DMSO-d₆): δ 26.6, 27.9, 31.8, 36.0, 40.0, 50.1, 59.5, 112.5, 118.2, 121.7, 122.2, 129.7, 134.3, 147.1, 148.4, 158.9, 162.8, 195.3.

MS: *m/z* 340 (M⁺).

Fig. S4 ¹H NMR of 2-amino-4-(3-nitrophenyl)-6,6,8,8-tetrahydro-7,7-dimethyl-5-oxo-4*H*-chromene-3-carbonitrile

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Fig. S5 ¹³C NMR of 2-amino-4-(3-nitrophenyl)-6,6,8,8-tetrahydro-7,7-dimethyl-5-oxo-4*H*-chromene-3-carbonitrile

Fig. S6 Mass spectra of 2-amino-4-(3-nitrophenyl)-6,6,8,8-tetrahydro-7,7-dimethyl-5-oxo-4*H*-chromene-3-carbonitrile

2-amino-4-(4-methoxyphenyl)-6,6,8,8-tetrahydro-7,7-dimethyl-5-oxo-4*H*-chromene-3carbonitrile (entry 10, table 3)

¹H NMR (400 MHz, DMSO-d₆): δ 0.94 (s, 3H, CH₃), 1.03 (s, 3H, CH₃), 2.09-2.23 (m, 4H, 2 X CH₂), 3.71 (s, 3H, OCH₃), 4.12 (s, 1H, CH), 6.84 (d, 2H, ArH), 6.97 (s, 2H, NH₂), 7.04 (d, 2H, ArH).

¹³C NMR (100 MHz, DMSO-d₆): δ 27.2, 28.9, 32.3, 35.2, 40.6, 50.5, 55.5, 59.0, 113.4, 114.1, 120.3, 128.7, 137.3, 158.4, 158.9, 162.7, 196.2.

MS: *m/z* 325 (M⁺).

Fig. S7 ¹H NMR of 2-amino-4-(4-methoxyphenyl)-6,6,8,8-tetrahydro-7,7-dimethyl-5-oxo-4*H*-chromene-3-carbonitrile

Fig. S8 ¹³C NMR of 2-amino-4-(4-methoxyphenyl)-6,6,8,8-tetrahydro-7,7-dimethyl-5-oxo-4*H*-chromene-3-carbonitrile

Crystallography data collection and refinement

X-ray data of complexes were collected on an X'calibur- Oxford Diffraction single crystal diffractometer (Department of Physics and Electronics, University of Jammu, Jammu) with CCD area-detector (graphite-monochromator, Mo-K α radiations, $\lambda = 0.71073$ Å). Data were corrected for Lorentz, polarization and absorption factors. The structures were solved by direct methods using SHELXS97.¹ All non-H atoms of the molecule were located in the best E-map. Full-matrix least-squares refinement was carried out using SHELXL97.¹ The geometry of the molecule was calculated using WinGX,² PARST³ and PLATON.⁴ Atomic scattering factors were taken from

International Tables for X-ray Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4). Molecular drawings were obtained using DIAMOND version 2.1.⁵ Crystallographic data, details of the data collection, structure solution and refinements are listed in **Table S1**.

- 1. G. M. Sheldrick, Acta Crystallogr, 2008, A64, 112.
- 2. L.J. Farrugia, J Appl Crystallogr, 1999, 32, 837.
- 3. M. Nardelli, J Appl Crystallogr, 1995, 28, 659.
- 4. A. L. Spek, Acta Crystallogr, 2009, D65, 148.
- 5. K. Brandenburg, DIAMOND, Version 2.1. Crystal Impact GbR, 1998, Bonn, Germany.

Table S1: Experimental details

Crystal data	
Chemical formula	$C_{144}H_{136}N_{24}O_{32}$
$M_{ m r}$	2714.77
Crystal system, space group	Triclinic, P^{-1}
Temperature (K)	293
a, b, c (Å)	12.0002 (5), 12.0002 (5), 24.7801 (14)
α, β, γ (°)	93.670 (3), 93.670 (3), 103.706 (4)
$V(Å^3)$	3448.2 (3)
Ζ	1
Radiation type	Μο Κα
μ (mm ⁻¹)	0.09
Crystal size (mm)	$0.30\times0.20\times0.20$
Data collection	
Diffractometer	Xcalibur, Sapphire3 diffractometer
Absorption	Multi-scan

correction	<i>CrysAlis PRO</i> , Agilent Technologies, Version 1.171.36.28 (release 01-02-2013 CrysAlis171 .NET) (compiled Feb 1 2013,16:14:44) Empirical absorption correction using spherical harmonics, implemented in SCALE3
	ABSPACK scaling algorithm.
T_{\min}, T_{\max}	0.934, 1.000
No. of measured, independent and observed [$I > 2\sigma(I)$] reflections	13673, 10570, 6910
<i>R</i> _{int}	0.022
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.617
Refinement	
$R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.168, 0.462, 1.08
No. of reflections	10570
No. of parameters	910
No. of restraints	0
H-atom treatment	H-atom parameters constrained
	$w = 1/[\sigma^2(F_o^2) + (0.1305P)^2 + 41.3017P]$ where $P = (F_o^2 + 2F_c^2)/3$
$\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)	0.63, -0.43

Table S2: Selected	l geometric parameters (Å	., °)

01-C10	1.395 (10)	C21—H21	0.9300
01—C2	1.408 (12)	C22—H22	0.9300
013—C5	1.236 (11)	C17—C22—C21	121.3 (9)
O24—N23	1.231 (12)	C17—C22—H22	119.4

O26—N23	1.217 (13)	C21—C22—H22	119.3
N14—C2	1.325 (12)	H12A—C12—H12C	109.5
N14—H14A	0.8600	H12B—C12—H12C	109.5
N14—H14B	0.8600	N16-C15-C3	177.1 (12)
N16—C15	1.118 (14)	C18—C17—C22	117.6 (9)
N23—C19	1.461 (12)	C18—C17—C4	121.1 (8)
C2—C3	1.326 (12)	C22—C17—C4	121.2 (8)
C3—C15	1.425 (15)	C17—C18—C19	120.1 (10)
C3—C4	1.525 (12)	C17—C18—H18	120.0
C4—C17	1.543 (12)	C19—C18—H18	120.0
C4—C9	1.555 (13)	C20—C19—C18	122.7 (9)
С4—Н4	0.9800	C20—C19—N23	119.1 (9)
С5—С9	1.463 (12)	C18—C19—N23	118.2 (9)
C5—C6	1.493 (13)	C19—C20—C21	118.2 (9)
C6—C7	1.532 (13)	C19—C20—H20	120.9
С6—Н6А	0.9700	C21-C20-H20	120.9
С6—Н6В	0.9700	C20-C21-C22	120.0 (11)
C7—C12	1.496 (16)	C20-C21-H21	120.0
C7—C8	1.510 (14)	C22-C21-H21	120.0
C7—C11	1.529 (14)	C10—C8—H8A	109.0
C8-C10	1.482 (14)	С7—С8—Н8А	109.0

	0.0700	C10 C2 U2D	100.0
C8—H8A	0.9700	C10—C8—H8B	109.0
C8—H8B	0.9700	С7—С8—Н8В	109.0
C9—C10	1.323 (11)	Н8А—С8—Н8В	107.8
C11—H11A	0.9600	C10—C9—C5	118.4 (8)
C11—H11B	0.9600	C10—C9—C4	124.2 (8)
C11—H11C	0.9600	C5—C9—C4	117.4 (7)
C12—H12A	0.9600	C9—C10—O1	121.5 (8)
C12—H12B	0.9600	C9—C10—C8	126.4 (8)
C12—H12C	0.9600	O1-C10-C8	112.2 (7)
C17—C18	1.358 (12)	C7—C11—H11A	109.5
C17—C22	1.386 (15)	C7—C11—H11B	109.5
C18—C19	1.383 (13)	H11A—C11—H11B	109.5
C18—H18	0.9300	C7—C11—H11C	109.5
C19—C20	1.348 (15)	H11A—C11—H11C	109.5
C20-C21	1.363 (15)	H11B—C11—H11C	109.5
C20—H20	0.9300	C7—C12—H12A	109.5
C21-C22	1.389 (15)	C7—C12—H12B	109.5
C10-01-C2	118.1 (7)	H12A—C12—H12B	109.5
C2—N14—H14A	120.0	C7—C12—H12C	109.5
C2—N14—H14B	120.0	C7—C6—H6A	108.7
H14A—N14—H14B	120.0	C5—C6—H6B	108.8

026—N23—024	120.9 (10)	С7—С6—Н6В	108.8
O26—N23—C19	120.3 (10)	H6A—C6—H6B	107.6
С17—С4—Н4	109.5	C12—C7—C8	110.7 (9)
C9—C4—H4	109.5	C12—C7—C6	111.2 (9)
013-C5-C9	121.5 (9)	C8—C7—C6	108.4 (9)
013-C5-C6	120.6 (9)	C12—C7—C11	107.1 (11)
C9—C5—C6	117.8 (8)	C8-C7-C11	110.4 (8)
C5—C6—C7	114.0 (8)	C6—C7—C11	109.0 (8)
С5—С6—Н6А	108.7	C10—C8—C7	113.1 (7)

Fig. S9 The packing arrangement of the molecules viewed down the a-axis

Fig. S10 Packing arrangement of 2-amino-4-(3-nitrophenyl)-6,6,8,8-tetrahydro-7,7-dimethyl-5oxo-4*H*-chromene-3-carbonitrile along *b* axis

Fig. S11 Packing arrangement of 2-amino-4-(3-nitrophenyl)-6,6,8,8-tetrahydro-7,7-dimethyl-5oxo-4*H*-chromene-3-carbonitrile along *c* axis