Electronic Supplementary Information (ESI)

Funnel shaped molecules containing benzo/pyrido[1,2,5]thiadiazole functionalities as peripheral acceptors for organic photovoltaic applications

 $Mahalingavelar Paramasivam^{a,b}, Akhil Gupta^{c,d}, N. Jagadeesh Babu^e, K. Bhanuprakash^{*,b,f}, Sheshanath V. Bhosale^{*,c} and V. Jayathirtha Rao^{*,a,f}$

^aCrop Protection Chemicals Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007 India. E-mail: jrao@iict.res.in

^bInorganic and Physical Chemistry division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007 India; E-mail: bhanu2505@yahoo.co.in

^cSchool of Applied Sciences, RMIT University, GPO Box 2476, Melbourne VIC 3001 Australia; Email: sheshanath.bhosale@rmit.edu.au

^dInstitute for Frontier Materials, Deakin University, Geelong Victoria 3216 Australia

^eCentre for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500607, India.

^fCSIR-Network of Institutes for Solar Energy, New Delhi, India

Bond Length	DCTB	DCTP	Bond Length	СТДВ	СТДР
N_1-C_2/N_1-C_3	1.421 / 1.421	1.423 / 1.422	N_1-C_2/N_1-C_3	1.422 / 1.419	1.426 / 1.416
N_1-C_4 / C_2-C_5	1.417 / 1.401	1.414 / 1.401	N_1-C_4/C_2-C_5	1.417 / 1.401	1.416 / 1.400
C_5-C_6 / C_6-C_7	1.389 / 1.398	1.389 / 1.398	C_5-C_6 / C_6-C_7	1.389 / 1.398	1.389 / 1.399
C ₇ -C ₈ / C ₈ -C ₉	1.398 / 1.389	1.398 / 1.389	C ₇ -C ₈ /C ₈ -C ₉	1.398 / 1.389	1.399 / 1.389
C_9 - C_2/C_3 - C_{10}	1.401 / 1.401	1.401 / 1.401	C_9-C_2/C_3-C_{10}	1.401 / 1.402	1.400 / 1.402
C_3 - C_{14} / C_{10} - C_{11}	1.401 / 1.389	1.401 / 1.389	C_{10} - C_{11} / C_{11} - C_{12}	1.388 / 1.403	1.388 / 1.403
$C_{11}\text{-}C_{12} \ / \ C_{12}\text{-}C_{13}$	1.398 / 1.398	1.398 / 1.398	C_{12} - C_{13} / C_{13} - C_{14}	1.403 / 1.388	1.404 / 1.387
$C_{13}\text{-}C_{14} \ / \ C_4\text{-}C_{15}$	1.389 / 1.402	1.389 / 1.403	C_{14} - C_3 / C_4 - C_{15}	1.402 / 1.402	1.403 / 1.403
$C_4\text{-}C_{19} \ / \ C_{15}\text{-}C_{16}$	1.403 / 1.388	1.404 / 1.387	C_{15} - C_{16} / C_{16} - C_{17}	1.387 / 1.404	1.387 / 1.404
$C_{16} C_{17} \ / \ C_{17} C_{18}$	1.403 / 1.404	1.404 / 1.404	C_{17} - C_{18}/C_{18} - C_{19}	1.403 / 1.388	1.403 / 1.388
$C_{18}\text{-}C_{19} \ / \ C_{7}\text{-}N_{20}$	1.387 / 1.419	1.386 / 1.418	$C_7-N_{20}/C_{21}-N_{20}$	1.419 / 1.399	1.417 / 1.400
$C_{21}\text{-}N_{20} \ / \ C_{32}\text{-}N_{20}$	1.399 / 1.399	1.399 / 1.400	C ₃₂ -N ₂₀ / C ₂₁ -C ₂₂	1.399 / 1.396	1.400 / 1.396
$C_{21}\text{-}C_{22} \ / \ C_{22}\text{-}C_{23}$	1.396 / 1.389	1.396 / 1.389	C_{22} - C_{23} / C_{23} - C_{24}	1.389 / 1.410	1.389 / 1.410
$C_{23}\text{-}C_{24}/C_{24}\text{-}C_{25}$	1.410 / 1.392	1.410 / 1.392	C_{24} - C_{25} / C_{25} - C_{26}	1.392 / 1.399	1.392 / 1.399
C_{25} - C_{26} / C_{25} - C_{26}	1.399 / 1.447	1.399 / 1.447	C_{26} - C_{27} / C_{27} - C_{28}	1.447 / 1.399	1.447 / 1.399
$C_{26}\text{-}C_{27} / C_{28}\text{-}C_{29}$	1.399 / 1.392	1.399 / 1.392	C_{28} - C_{29} / C_{29} - C_{30}	1.392/ 1.410	1.392/ 1.410
$C_{29}\text{-}C_{30}/C_{30}\text{-}C_{31}$	1.410/ 1.389	1.410/ 1.389	C_{30} - C_{31} / C_{31} - C_{32}	1.389 / 1.396	1.389 / 1.396
$C_{31}\text{-}C_{32}/C_{17}\text{-}C_{33}$	1.396 / 1.481	1.396 / 1.478	C_{12} - C_{33} / C_{33} - C_{34}	1.482 / 1.443	1.478/ 1.447
$C_{33}\text{-}C_{34} / C_{36}\text{-}C_{37}$	1.443 / 1.448	1.448 / 1.448	C ₃₄ -X ₃₅ / X ₃₅ -C ₃₆	1.365 / 1.423	1.306 / 1.360
C ₃₆ -X ₃₅ / C ₃₄ -X ₃₅	1.365 / 1.423	1.306 / 1.360	C_{36} - C_{37}/C_{37} - C_{38}	1.448 / 1.420	1.448 / 1.417
C_{37} - C_{38}/C_{38} - C_{33}	1.420 / 1.377	1.417 / 1.376	C_{36} - N_{39} / C_{37} - N_{40}	1. 338 / 1.335	1. 335 / 1.335
$C_{36}\text{-}N_{39}/C_{37}\text{-}N_{40}$	1. 335 / 1.338	1. 335 / 1.335	$N_{39}\text{-}S_{41}/N_{40}\text{-}S_{41}$	1.641/ 1.642	1.646/ 1.635
$N_{39}\text{-}S_{41}/N_{40}\text{-}S_{41}$	1.642/ 1.641	1.635/ 1.647	C_{38} - C_{33} / C_{19} - C_4	1.377 / 1.402	1.377 / 1.402

Fig. S1. Geometrical Coordinates of target dyes.

Fig. S2. The ORTEP diagram of intermediate **6b** with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level for non-hydrogen atoms and H atoms are shown as small spheres of arbitrary radius.

Crystallographic data for DCTP: C₄₈H₄₀N₈S₂, *M* = 793.00, 0.43 x 0.21 x 0.12 mm³, triclinic, space group *P*¹ (No. 2), *a* = 12.4586(9), *b* = 14.8169(10), *c* = 15.6249(11) Å, *α* = 110.3700(10), β = 99.7720(10), γ = 112.0440(10)°, *V* = 2351.8(3) Å³, *Z* = 2, *D*_c = 1.120 g/cm³, *F*₀₀₀ = 832, CCD area detector, MoKα radiation, λ = 0.71073 Å, *T* = 293(2)K, 2 θ_{max} = 50.0°, 8274 reflections collected, 8274 unique (R_{int} = 0.0265), Final *GooF* = 0.998, *R1* = 0.0712, *wR2* = 0.1928, *R* indices based on 6084 reflections with I >2 σ (I) (refinement on *F*²), 529 parameters, 15 restraints and μ = 0.153 mm⁻¹.

Crystallographic data for Intermediate 6b: $C_{23}H_{14}Br_2N_4S$, M = 538.26, 0.32 x 0.19 x 0.12 mm³, monoclinic, space group $P2_1/n$ (No. 14), a = 8.3446(12), b = 23.178(3), c = 10.9171(14) Å, $\beta = 94.496(3)^\circ$, V = 2105.0(5) Å³, Z = 4, $D_c = 1.698$ g/cm³, $F_{000} = 1064$, CCD area detector, MoK α radiation, $\lambda = 0.71073$ Å, T = 293(2)K, $2\theta_{max} = 50.0^\circ$, 20022 reflections collected, 3696 unique (R_{int} = 0.0443), Final *GooF* = 1.024, R1 = 0.0504, wR2 = 0.1263, R indices based on 2718 reflections with I >2 σ (I) (refinement on F^2), 271 parameters and $\mu = 3.968$ mm⁻¹. CCDC number of **DCTP**: 1038010

CCDC number of Intermediate 6b: 1038011

Table S1: Photophysical properties of the dyes

Dye	λ _{flu} ^a	Stokes shift	Φ_{f}^{c}	$ au^{d}$	K _r ^e	$\mathbf{K_{nr}}^{\mathbf{f}}$	K _{ET} ^g
	(nm)	(cm ⁻¹)		(ns)	(10^9s^{-1})	(10^9s^{-1})	$(x \ 10^8 \ s^{-1})$
DCTB	542	6000	0.13	6.61	0.019	0.13	1.51
DCTP	576	5627	0.18	7.29	0.024	0.11	1.37
СТДВ	507	4667	0.11	5.11	0.022	0.17	1.96
СТДР	581	5883	0.16	7.03	0.023	0.12	1.42

^aEmission spectra in toluene (solution concentration = 10-5 M) at ambient temperature. ^cFluorescence quantum yield measured in toluene; ^dExcited state lifetime in nanoseconds (ns); ^eRadiative decay constant (Kr= $\Phi f/\tau$); ^fNon-radiative decay constant (Knr= (1- Φf)/ τ)); ^gElectron transfer rate constants (error limit of τ and KET ~10%).

Fig. S3. UV-Vis absorption spectra of the dyes in different solvents and thin film state.

Fig. S4. Normalized plots of simulated and experimental UV-Vis spectra of the dyes. The green vertical bars correspond to the calculated singlet excited states in GaussSum 2.2.5.

Fig. S5. Photoluminescence spectra of the dyes in different solvents.

Compound	CHCl ₃	THF	Hexane	Toluene	ACN	DMF	MeOH
DCTB	414	408	403	409	402	410	406
DCTP	449	433	436	435	428	436	430
CTDB	416	411	406	410	405	414	408
CTDP	444	434	436	433	428	437	429

Table S2. Absorption maxima of the dyes in different solvents (units in nm).

Table S3. Emission maxima of the dyes in different solvents (units in nm).

Compound	CHCl ₃	THF	Hexane	Toluene	ACN	DMF	MeOH
DCTB	616	602	560	616	-Q-	-Q-	-Q-
DCTP	649	656	608	648	-Q-	-Q-	-Q-
CTDB	573	574	531	573	-Q-	-Q-	-Q-
CTDP	598	593	550	596	-Q-	-Q-	-Q-

Table S4. Stokes shift of the dyes in different solvents (units in cm⁻¹).

Compound	CHCl ₃	THF	Hexane	Toluene	ACN	DMF	МеОН
DCTB	7921	7899	6957	8216	-	-	-
DCTP	6863	7851	6488	7556	-	-	-
CTDB	6587	6909	5798	6937	-	-	-
CTDP	5800	6178	4754	6316	-	-	-

Table S5. HOMO, LUMO energy values obtained from DFT studies

Dye	HOMO(eV)	LUMO (eV)	E _{g, HL} (eV)
DCTB	-5.25	-2.60	2.65
DCTP	-5.32	-2.88	2.44
CTDB	-5.35	-2.84	2.51
CTDP	-5.47	-3.12	2.35

Dye	T _d (°C)	T _g (°C)	T _m (°C)
DCTB	434	148	313
DCTP	515	172	371
СТДВ	389	189	316
СТДР	458	198	366

Table S6. Thermal data of the dyes

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of molecule 1a

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of molecule 1b

¹H and ¹³C NMR spectra of molecule **2a**

 ^{1}H and ^{13}C NMR spectra of molecule **2b**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of molecule $\mathbf{5}$

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of molecule $\mathbf{6b}$

¹H and ¹³C NMR spectra of **DCTP**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of molecule \mathbf{CTDP}

GC-Mass spectrum of molecule 2a

GC-Mass spectrum of molecule 2b

EI-Mass spectrum of molecule 5

EI-Mass spectrum of molecule 6

EI-Mass spectrum of molecule 7

IR Spectrum of DCTB

IR Spectrum of DCTP

IR Spectrum of CTDB

IR Spectrum of CTDP