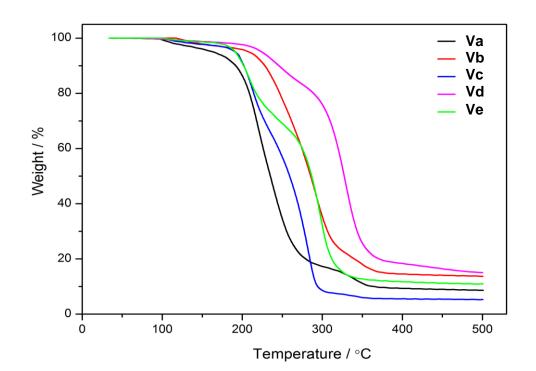

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information


Herbicidal ionic liquids derived from renewable sources

Juliusz Pernak^a, Kamil Czerniak^a, Agnieszka Biedziak^a, Katarzyna Marcinkowska^b, Tadeusz Praczyk^b, Karol Erfurt^c, Anna Chrobok^c

^cDepartment of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, 44-100 Gliwice, Poland

Figure S1. Changes in the decomposition temperatures (T_{onset50%}) determined for salts derived from the MCPA and 2,4-D anion as an effect of increasing the chain length of the alkyl substituent.

^aDepartment of Chemical Technology, Poznan University of Technology, 60-965 Poznan, Poland

^bInstitute of Plant Protection - National Research Institute, 60-318 Poznan, Poland

Figure S2. TGA curves of the obtained MCPA-based ILs

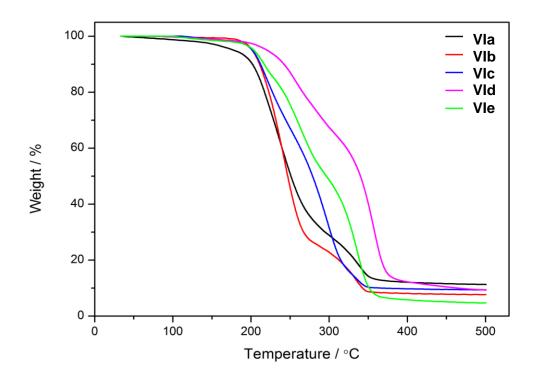


Figure S3. TGA curves of the obtained 2,4-D-based salts

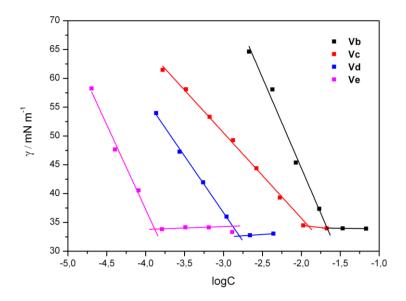
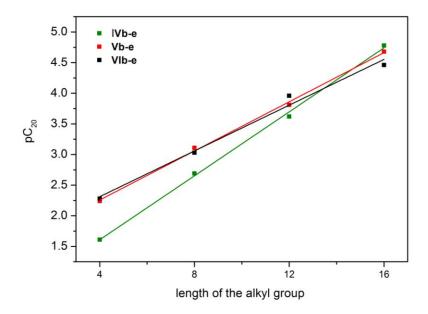



Figure S4. Surface tension (γ) as a function of logarithm of concentration for ILs V

Figure S5 Relationship between pC_{20} and the number of carbon atoms in the alkyl substituent of bromides (**IVb-e**), salts with the MCPA anion (**Vb-e**) and the 2,4D anion (**VIb-e**).

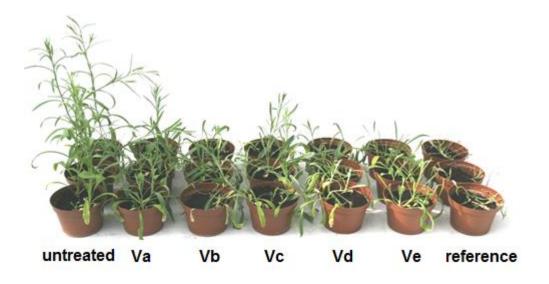


Figure S6. The efficacy of ILs V against cornflower.

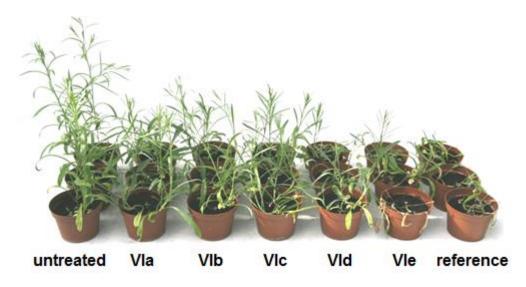


Figure S7. The efficacy of salts VI against cornflower.

Table S1. The influence of ILs **V** on weed control.

Treatment	Fresh weight reduction (%)				
	Cornflower		White mustard		
Va	40	c ^a	54	b	
$\mathbf{V}\mathbf{b}$	69	ab	77	ab	
Vc	39	c	75	ab	
Vd	57	bc	87	a	
Ve	56	bc	76	ab	
MCPA (reference)	86	a	75	ab	

^aThe same letter in the column indicates no statistical differences between treatments.

Table S2. The influence of salts VI on weed control.

Treatment	Fresh weight reduction (%)				
	Cornflower		White mustard		
VIa	23	ba	39	b	
VIb	30	ab	39	b	
VIc	34	ab	52	ab	
VId	34	ab	64	ab	
VIe	66	ab	71	a	
2,4-D (reference)	67	a	74	a	

^a The same letter in the column indicates no statistical differences between treatments.