Supporting Information

Three-dimensional nanocomposite formed by hydrophobic multiwalled carbon nanotubes threading titanium dioxide for counter electrode of enhanced

performance dye-sensitized solar cells

Zhichun Yang, Waqar Ahmad, Liang Chu, Majid Raissan Al-bahrani, Fanfan Tu, Yumei Wang,

Hang Zhang, Xi Wang, Jun Su, Nishuang Liu, Luying Li, Changping Yang & Yihua Gao

In our study, we doped TiO_2 with different amount (10%, 20% and 30%) in MWCNTs for the optimum performance of DSSCs. The nanocomposite counter electrode (CE) which contain 20% TiO₂ showed the highest efficiency for DSSCs. The FE-SEM images Fig. S1 (a) & (b) show that the nanocomposite containing 10% TiO₂ threaded by MWCNTs have not tightly assembled. Furthermore, Fig. S1(c) & (d) exhibit that the TiO₂ nanoparticle dispersed irregularly. The power conversion performances of our as-prepared samples (10%, 20% and 30%) are shown in Fig. S2 and their corresponding photovoltaic parameters are tabulated in Table S1. Fig. S3(a) presents a FE-SEM image of the pristine MWCNTs which were applied for building 3D threaded architectures. The diameter and length was found to be 30-50 nm and 10-20 μ m, respectively. The surface morphology of our synthesized TiO₂ was shown in Fig. S3(b) and its diameter is 25 nm. As shown in Fig. 3(c) & 3(d), the film thickness of photoanode and our nanocomposite CE (20% TiO₂) were found to be 13.70 µm and 11.95 µm respectively. Fig. S4 is EDX mapping to characterize the distribution of various elements in nanocomposite. Fig. S5 depicts the lower peak-to-peak separation (E_{pp}) value of our as-prepared (MWCNTs/TiO₂) CE than MWCNTs and conventional

Pt CE. The obtained results indicate excellent catalytic reversibility towards the reduction of I_3 ⁻ due to the introduction of TiO₂ into MWCNTs. The BET surface area (114.05334 m²/g) and the nitrogen adsorption isotherms of pristine MWCNTs were measured (See in Fig. S6) by a N₂ adsorption isotherm at 77 K with a BET analyzer (JW-BK122W, Beijing JWGB Sci.&Tech.Co.,Ltd.).

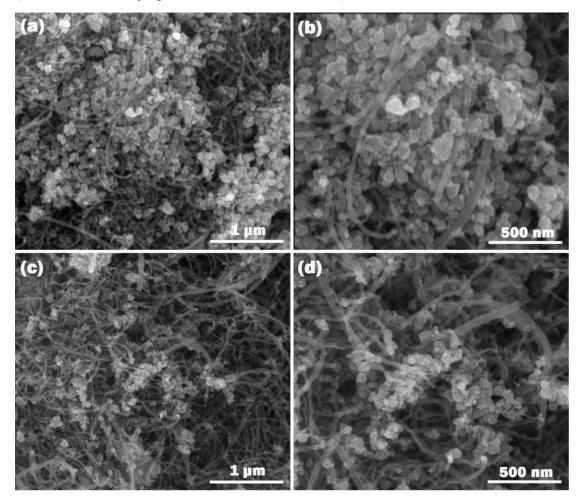
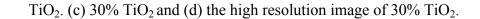



Figure S1. SEM images of (a) 10% TiO₂ and (b) the high resolution image of 10%

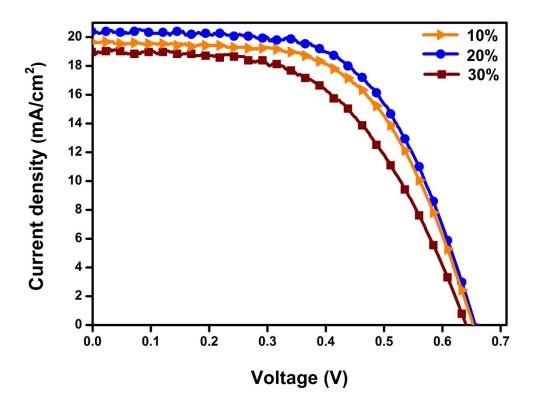


Figure S2. J-V curves for nanocomposite CEs with different percentage of TiO₂.

Table S1. Photovoltaic performance of nanocomposite CEs with different percentageof TiO_2 .

Percentage	J _{sc} (mA/cm ²)	$V_{oc}(V)$	FF	PCE (%)
10%	19.5	0.66	0.58	7.56
20%	20.1	0.66	0.60	7.95
30%	18.9	0.64	0.55	6.61

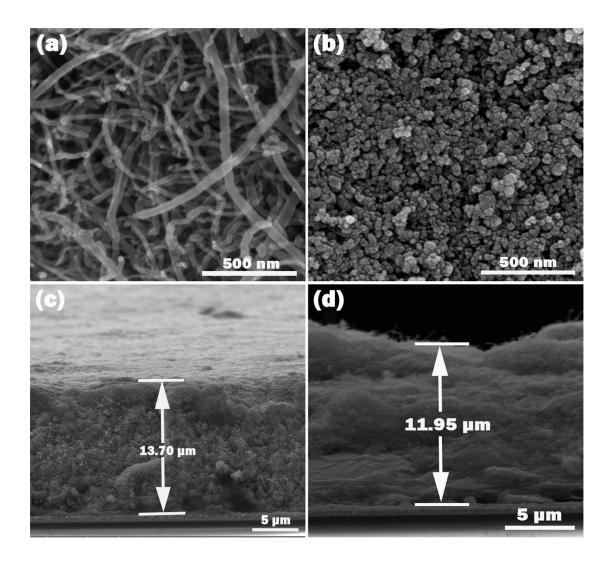


Figure S3. SEM images of (a) MWCNTs (b) TiO_2 synthesised by hydrothermal method (c) thickness of photoanode for DSSCs. (d) thickness of nanocomposite CE fabricated with the method of doctor-blading.

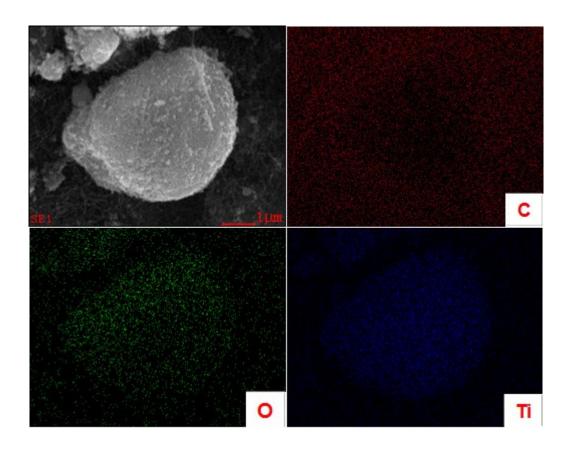


Figure S4. EDX mapping images for selected assembly of nanocomposite.

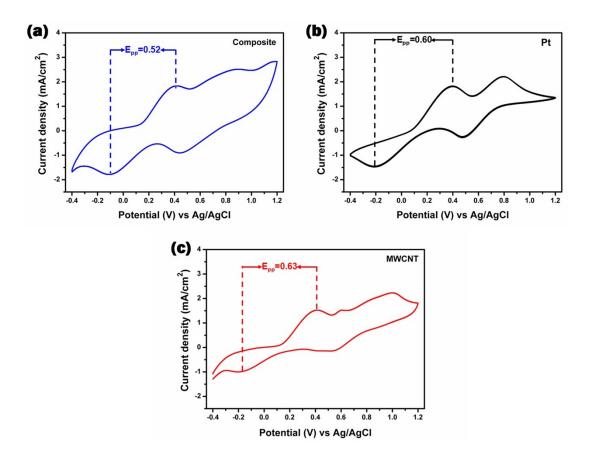


Figure S5. Cyclic voltammetry (CV) curves (peak-to-peak separation).

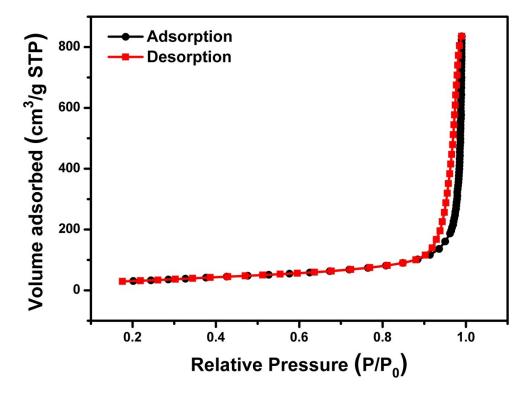


Figure S6. Nitrogen adsorption isotherms of pristine MWCNTs.