Electronic Supplementary Information (ESI)

An important prerequisite for efficient Förster resonance energy

transfer from human serum albumin to alkyl gallate

Qing Wang, Ying Xiao, Yanmei Huang and Hui Li^a

 a) College of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China

Fig. 1 Fluorescence spectra of G/ME/EG/PG/BG–HSA interaction (λ_{ex} =280 nm). $C_{(HSA)} = C_{(G/ME/EG/PG/BG)} = 2 \mu M.$

Fig. S2 The 1H WATERGATE, STD, and WaterLOGSY spectrum for the mixture of G and HSA. $C_{(HSA)} = 0.01$ mM and $C_{(G)} = 0.4$ mM.

Fig. S3 The 1H WATERGATE, STD, and WaterLOGSY spectrum for the mixture of EG and HSA. $C_{(HSA)} = 0.01$ mM and $C_{(EG)} = 0.4$ mM.

Fig. S4 The 1H WATERGATE, STD, and WaterLOGSY spectrum for the mixture of PG and HSA. $C_{(HSA)} = 0.01$ mM and $C_{(PG)} = 0.4$ mM.

Fig. S5 The 1H WATERGATE, STD, and WaterLOGSY spectrum for the mixture of BG and HSA. $C_{(HSA)} = 0.01$ mM and $C_{(BG)} = 0.4$ mM.

Fig. S6 Effect of WF/IB on the STD spectrum of the G-HSA interaction. $C_{(HSA)} = 0.01$ mM, $C_{(G)} = 0.4$ mM and $C_{(WF/IB)} = 0.8$ mM.

Fig. S7 Effect of WF/IB on the STD spectrum of the EG-HSA interaction. $C_{(HSA)} = 0.01 \text{ mM}, C_{(EG)} = 0.4 \text{ mM}, \text{ and } C_{(WF/IB)} = 0.8 \text{ mM}.$

Fig. S8 Effect of WF/IB on the STD spectrum of the PG-HSA interaction. $C_{(HSA)} = 0.01 \text{ mM}, C_{(PG)} = 0.4 \text{ mM}, \text{ and } C_{(WF/IB)} = 0.8 \text{ mM}.$

Fig. S9 Effect of WF/IB on the STD spectrum of the BG-HSA interaction. $C_{(HSA)} = 0.01 \text{ mM}, C_{(BG)} = 0.4 \text{ mM}, \text{ and } C_{(WF/IB)} = 0.8 \text{ mM}.$

Fig. S10 Effect of PB/IB on the fluorescence of WF–HSA complex (λ_{ex} =317 nm). $C_{(WF)} = C_{(PB/IB)} = C_{(HSA)} = 2.0 \ \mu M.$

Fig. S11 Fluorescence spectra of G/ME/EG/PG/BG–HSA (A1653) interaction (λ_{ex} =317 nm). C_(HSA) = C_(G/ME/EG/PG/BG) = 2 μ M.

Fig. S12 Fluorescence decay of HSA (A1653) in the absence and presence of probes $(\lambda_{ex} = 280 \text{ nm})$: $C_{(HSA)} = C_{(G/MG/EG/PB/BG)} = 2.0 \mu M.$

Fig. S13 ITC titration of HSA (A1653)–(a) G/(b) MG/(c) EG/(d) PG interaction.

Fig. S14 ITC titration of HSA-(a) G/(b) MG/(c) EG/(d) PG interaction.

Fig. S15 Fluorescence spectra of G/ME/EG/PG/BG–LYZ interaction (λ_{ex} =317 nm). C_(LYZ) = C_(G/ME/EG/PG/BG) = 2 μ M.

Fig. S16 Fluorescence decay of LYZ in the absence and presence of probes (λ_{ex} =280 nm): C_(LYZ) = C_(G/MG/EG/PB/BG)=2.0 μ M.

Fig. S17 Fluorescence spectra of G/ME/EG/PG/BG–LYZ interaction (λ_{ex} =280 nm). $C_{(LYZ)} = C_{(G/ME/EG/PG/BG)} = 2 \mu M.$

Fig. S18 ITC titration of LYZ-G (a)/MG (b)/EG (c)/PG (d)/BG (e) interaction.

Fig. S19 Fluorescence spectra of dansylamide/dansylsarcosine–HSA/LYZ interaction ($\lambda_{ex} = 350 \text{ nm}$). C_(HSA/LYZ) = C_(dansylamide/dansylsarcosine) = 2 μ M.

τ_1	τ_2	τ_3	α_1	α_2	α3	< t >	χ^2
3.399	0.515	6.948	0.334	0.035	0.631	5.539	0.993
3.448	0.485	7.015	0.351	0.040	0.609	5.501	1.028
3.363	0.436	6.957	0.340	0.032	0.628	5.526	1.072
3.293	0.464	6.897	0.326	0.050	0.625	5.405	1.107
2.852	0.456	6.558	0.285	0.184	0.531	4.377	1.045
2.579	0.449	6.432	0.270	0.282	0.448	3.703	1.131
	$ \begin{array}{r} \tau_1 \\ 3.399 \\ 3.448 \\ 3.363 \\ 3.293 \\ 2.852 \\ 2.579 \\ \end{array} $	$\begin{array}{c ccc} \hline \tau_1 & \tau_2 \\ \hline 3.399 & 0.515 \\ \hline 3.448 & 0.485 \\ \hline 3.363 & 0.436 \\ \hline 3.293 & 0.464 \\ \hline 2.852 & 0.456 \\ \hline 2.579 & 0.449 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

 Table S1. Lifetime of HSA (A1887) fluorescence decay in the absence and presence of probes.