Supporting Information

AIEE-type fluorescent benzoxazine-derivatived macromolecule: catalyst-free synthesis and its preliminary application for aqueous picric acid detection

Yue Su^{*a,b*}, Wei Shi^{*b**}, Xin Chen^{*b*}, Shiyu Zhao^{*a*}, Yonghai Hui^{*a**}, Zhengfeng Xie^{*b*}

^a Key Laboratory of Petroleum and Gas Fine Chemicals, Educational Ministry of China, School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, P. R. China

^b Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, P. R. China

* corresponding author: Tel: +86 028 83037306; fax: +86 028 83037305 *E-mail address*: <u>shiwei80@swpu.edu.cn</u>, <u>xjuwshi@gmail.com</u> (W Shi)

hyhai97@126.com (YH Hui)

Table and Figure Captions

Table S1 Calculated HOMO/LUMO values of TPE-BOZ and other analytes.

Table S2 Summarization about reported macromolecules-based fluorescence probes for PA.

Fig. S1 ¹H NMR spectrum of M3 in CDCl₃.

Fig. S2 ¹³C NMR spectrum of M3 in CDCl₃.

Fig. S3 FT-IR spectrum of M3.

Fig. S4 ¹H NMR spectra of PEA (a) and TPE-BOZ (b) in CDCl₃.

Fig. S5 FT-IR spectra of PEA (a) and TPE-BOZ (b).

Fig. S6 TOF-MS of TPE-BOZ.

Fig. S7 SEM of TPE-BOZ (1×10⁻⁵ M) in ETOH/water (v/v=1/9) co-solvent system.

Fig. S8 UV spectra of TPE-BOZ (1.0×10^{-5} M) in EtOH/water mixtures with different fractions of water.

Fig. S9 Fluorescence quenching of TPE-BOZ by PA under different λ_{ex} .

Fig.S10 Visual photographs of TPE-BOZ adsorbed on a TLC plate (a) and with a spot of

water (b) and PA solution (10⁻³M) (c) under hand-held UV lamp (365 nm).

	TPE-BOZ	PA	DNP	PNP	ONP	PNT	NB	NM	PhOH
НОМО	-4.90	-8.59	-7.91	-7.16	-7.02	-7.50	-7.74	-8.35	-6.14
LUMO	-1.32	-4.19	-3.56	-2.45	-2.93	-2.50	-2.62	-2.16	-0.08

Table S1. Calculated HOMO/LUMO values of TPE-BOZ and other analytes.

Table S2 Summarization about reported macromolecules-based fluorescence probes for PA.

Probing platform	Detection limit	Detection medium	Catalyst utilized in preparation	Synthetic time	References
Urotropine-MOF	~7.1×10 ⁻⁶ M	water	Free	24h	[52]
Triphenylamine-based analogous carboxylic acid	1.14×10 ⁻⁶ M	CHCl ₃ /DMAC	CuI	>24h	[53]
Biphenyl-containing hexaphenylbenzene derivative	1.57×10 ⁻⁶ M	$V_{water}/V_{THF} = 4/6$	Pd(PPh ₃) ₂ Cl ₂	>24h	[54]
Thiophene-containing pentacenequinone derivative	1.5×10 ⁻⁸ M	$V_{water}/V_{THF} = 9/1$	Pd(PPh ₃) ₄	>24h	[55]
Hexa-peri-hexabenzocoronene-based derivatives	4×10-9 M	$V_{water}/V_{THF} = 4/6$	Pd(PPh ₃) ₂ Cl ₂	>12h	[56]
TPE-containting hyperbranched polytriazoles	4.5×10 ⁻⁵ M	$V_{water}/V_{THF} = 9/1$	Cu(PPh ₃) ₃ Br	7h	[48]
TPE-based benzoxazine macromolecules	4.7×10-9 M	$V_{water}/V_{EtOH} = 9/1$	Free	6h	This work

Fig. S1 ¹H NMR spectrum of M3 in CDCl₃.

Fig. S2 ¹³C NMR spectrum of M3 in CDCl₃.

Fig. S3 FT-IR spectrum of M3.

Fig. S4¹H NMR spectra of PEA (a) and TPE-BOZ (b) in CDCl₃.

Fig. S5 FT-IR spectra of PEA (a) and TPE-BOZ (b).

Fig. S6 TOF-MS of TPE-BOZ.

Fig. S7 SEM of TPE-BOZ (1×10⁻⁵ M) in ETOH/water (v/v=1/9) co-solvent system.

Fig. S8 UV spectra of TPE-BOZ (1.0×10^{-5} M) in EtOH/water mixtures with different fractions

of water.

Fig. S9 Fluorescence quenching of TPE-BOZ by PA under different λ_{ex} .

Fig. S10 Visual photographs of **TPE-BOZ** adsorbed on a TLC plate (a) and with a spot of water (b) and PA solution (10⁻³M) (c) under hand-held UV lamp (365 nm).