A near-infrared BODIPY-based fluorescent probe for the detection of hydrogen sulfide in fetal bovine serum and living cells

Jian Zhang,^{‡a} Junliang Zhou,^{‡b} Xiaochun Dong,^{*a} Xing Zheng,^{*b} and Weili Zhao^{*a} ^aSchool of Pharmacy, Fudan University, Shanghai, P. R. China. E-mail: zhaoweili@fudan.edu.cn ^bInstitute of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, P. R. China. E-mail: zhengxing5018@yahoo.com

1. Additional Absorption and Emission Spectra	S2
2. MTT assays	S3
3. The plausible mechanism for selective reaction of BDP-680 to NaSH	S3
4. Comparison of fluorescent probes for H_2S	S4
5 Spectroscopic data	S6
6 X-ray crystal structure determinations of compound BDP-680	S8
7 References	S9

1. Additional Absorption and Emission Spectra

Figure S1 Normalized excitation spectra ($\lambda_{em} = 683 \text{ nm}$) of **BDP-680** (10 µM) prior to (black curve) and after (red curve) addition of NaSH (500 µM) for 0.5 h in MeCN/H₂O (8/2, v/v; pH = 7.2) at 25 °C.

Figure S2 The effect of water content on the relative fluorescence intensity of **BDP-680** (10 μ M) upon addition of 500 μ M NaSH in MeCN/H₂O. All the data was measured at 683 nm ($\lambda_{ex} = 610$ nm) at 25 °C 30 min after addition of NaSH (black square: **BDP-680**; red circle: **BDP-680** + NaSH).

2. MTT assays

MTT experiment was performed in 96-well plate to assess the cytotoxicity of the probe. The MTT assays in Human Hepatoma SMMC-7721 cells with probe concentrations from 2.5 to 80 μ M in comparison with the blank and negative control. Cells were plated on cell plates at 4 × 10³ cells per well and allowed to incubate for 24 hr. The **BDP-680** in various concentrations was added to the well and incubated for 24 hr followed by classical MTT treatment and data acquiring.

Figure S3. Cell viability assay of **BDP-680** in 7721 Cell, all compounds were incubated with the cells for 24 hr, and the cell viability was observed via MTT assays.

3. The plausible mechanism for selective reaction of BDP-680 to NaSH

Scheme S1 The plausible mechanism for selective reaction of BDP-680 to NaSH

Probes	λex/λem [nm]	Linear response range	Detection limit	Ref.
	340/535	1–100 µM	1 µM	23
	365/450		10 µM	25
OMe O N N N ₃	435/545		1-5 μM	26
N_3	625/710	1–100 µM	0.08 μM	27
NC CN	520/670	25–250 μM	3.05 µM	28
	465/—	0–10 μM		32
	700/780	0–70 μM	5.0–10 nM	34

4. Table S1. Comparison of fluorescent probes for H₂S.

5. Spectroscopic data

6. X-ray crystal structure determinations of BDP-680

Crystals suitable for the X-ray structural determination were mounted on a Mac Science DIP2030 imaging plate diffractometer and irradiated with graphite monochromated Mo- $K\alpha$ radiation ($\lambda = 0.71073$ Å) for the data collection. The unit cell parameters were determined by separately autoindexing several images in each data set using the DENZO program (MAC Science).¹ For each data set, the rotation images were collected in 3° increments with a total rotation of 180° about the ϕ axis. The data were processed using SCALEPACK. The structures were solved by a direct method with the SHELX-97 program.² Refinement on F^1 was carried out using the full-matrix least-squares by the SHELX-97 program.² All non-hydrogen atoms were refined using the anisotropic thermal parameters. The hydrogen atoms were included in the refinement along with the isotropic thermal parameters.

Crystal data for **BDP-680**. C₃₃H₂₈BF₂N₃O₄, M = 579.40, triclinic, a = 8.0202(2), b = 14.3300(2), c = 16.5784(3) Å, $\alpha = 112.088(1)$, $\beta = 101.887(2)$, $\gamma = 90.329(3)^\circ$, V = 1720.36(6) Å³, T = 296(2) K, space group *P*-1, Z = 2, F(000) = 728, $D_{calc} = 1.352$ g cm⁻³, $\mu = 0.25$ mm⁻¹, R_{int} = 0.022, $R_1 = 0.080$ ($I > 2\sigma(I)$), wR_2 (all data) = 0.228, *GOF* = 1.17. CCDC reference number 1023076 for **BDP-680**.

CCDC reference number 1023076 for **BDP-680** contains the supplementary crystallographic data. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336033; or **deposit@ccdc.cam.uk)**.

7. References

- 1 Z. Otwinowski and W. Minor, *Methods Enzymol.* 1997, 276, 307.
- 2 G. M. Sheldrick, *SHELX-97*, University of Göttingen, Göttingen, Germany, 1997.