Supporting Information Facile one-step synthesis of highly graphitized hierarchical porous carbon nanosheets with large surface area and high capacity for Lithium storage

Qi Yang¹, Zongbin Zhao*¹, Yanbao Jia², Yanfeng Dong¹, Zhengfa Yu¹, Xuzhen Wang¹ and Jieshan Qiu*¹

1. State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, PSU-DUT Joint Center for Energy Research, Dalian University of Technology,

Dalian 116024, China

2. Shandong Lukang Record Pharmaceutical Co., Ltd., Jining, 272073, China.

Table S1

Property comparison of our materials with the materials reported in literature

Sample ID	Temperature	Catalyst	Surface area	$I_D / I_G {}^{[a]}$	Reference
	(°C)		(m^{2}/g)		
HPCS-Fe/Zn-700	700	Fe	1815	0.62	
HPCS- Fe/Zn-850	850	Fe	2109	0.48	This work
HPCS- Fe/Zn-1000	1000	Fe	1461	0.40	
H fiber	950	Fe	350	-	1
PCNF	600	Fe	91	1.35	2
PMC-850	850	-	810	0.77	3
HPC-G-800	800	Ni	549	0.83	4
TCA1.5	350	-	1397.6	0.85	5
NGPC-1000-10	1000	-	932	0.90	6

[a] The intensity ratio of D band and G band (I_D/I_G) of Raman partially reflects the graphitization degree.

Fig. S1 SEM images of (a) HPCS-Fe/Zn-850, (b) HPCS-Fe-850 and (c) HPCS-Zn-

850

Fig. S2 Raman spectra (a) and XRD patterns (b) of HPCSs obtained using catalyst and activator or not.

Fig. S3 FTIR spectrum of precursor resin and HPCS- Fe/Zn-850.

Fig. S4 N_2 adsorption-desorption isotherms and pore-size distribution curves of HPCS-Fe-850 (a) and HPCS-Zn-850 (b).

Fig. S5 Discharge/charge profiles of HPCS-Fe/Zn-700 (a) and HPCS-Fe/Zn-1000 (b).

Fig. S6 (a) Cyclic voltammograms and (b) EIS results after several cycles (5, 10, 20 cycles) of HPCS-Fe/Zn-850.

Fig. S7 SEM (a) and TEM (b) images of HPCS-Fe/Zn-850 after cycles.

Fig. S8 Thermal gravimetric analysis of HPCS- Fe/Zn-850.

Reference:

- 1. S.-H. Yoon, C.-W. Park, H. Yang, Y. Korai, I. Mochida, R. T. K. Baker and N. M. Rodriguez, *Carbon*, 2004, 42, 21-32.
- 2. S. Lim, S.-H. Yoon, I. Mochida and J.-h. Chi, *The Journal of Physical Chemistry B*, 2004, 108, 1533-1536.
- 3. Z. Li, Z. Xu, X. Tan, H. Wang, C. M. B. Holt, T. Stephenson, B. C. Olsen and D. Mitlin, *Energy* &

Environmental Science, 2013, 6, 871-878.

- 4. C.-h. Huang, R.-a. Doong, D. Gu and D. Zhao, Carbon, 2011, 49, 3055-3064.
- 5. Y. Zhou, S. L. Candelaria, Q. Liu, E. Uchaker and G. Cao, Nano Energy, 2015, 12, 567-577.
- L. Zhang, Z. Su, F. Jiang, L. Yang, J. Qian, Y. Zhou, W. Li and M. Hong, *Nanoscale*, 2014, 6, 6590-6602.