
H₂ activation using the first 1:1:1 hetero-tri(aryl)borane

Robin J. Blagg and Gregory G. Wildgoose

School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, U.K.

Figure S1 X-ray crystallographic structure of $B(C_6F_5)\{3,5-(CF_3)_2C_6H_3\}(C_6Cl_5)$ 3

"Gutmann-Beckett method" for measurement of Lewis acidity

3 (Lewis acid) is combined with a three-fold excess of OPEt₃ (Lewis base) in ca. 0.8 cm³ CD₂Cl₂ in a NMR tube, rapidly generating the Lewis acid-base adduct Et₃PO–**3**, and 1 H, 11 B, 19 F and 31 P{ 1 H} NMR spectra obtained.

$Et_3POB(C_6F_5)\{3,5-(CF_3)_2C_6H_3\}(C_6Cl_5)$ Et_3PO-3

¹H NMR (500.2 MHz, CD₂Cl₂, 25 °C, δ): +7.81 (s, 2H, Ar^{F6} 2,6-H), +7.68 (s, 1H, Ar^{F6} 4-H), +1.89 (br.m, 6H, Et CH₂), +1.10 (br.m, 9H, Et CH₃); ¹¹B NMR (160.5 MHz, CD₂Cl₂, 25 °C, δ): +2.51 (br.s); ¹⁹F NMR (470.7 MHz, CD₂Cl₂, 25 °C, δ): -62.9 (s, 6F, Ar^{F6} 3,5-CF₃), -131.3 (m, 2F, Ar^{F5} 2,6-F), -158.8 (t, ${}^{3}J_{FF}$ = 19.9 Hz, 1F, Ar^{F5} 4-F), -163.8 (m, 2F, Ar^{F5} 3,5-F); ³¹P{¹H} NMR (202.5 MHz, CD₂Cl₂, 25 °C, δ): +76.49 (s).

H₂ cleavage by FLPs

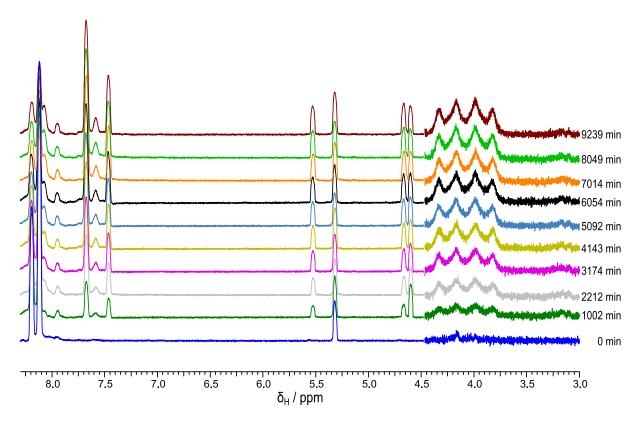
Equimolar quantities (ca. 30 µmol) of Lewis acid (3) and Lewis base {either P(${}^{t}Bu$)₃, 2,2,6,6-tetramethylpiperidine (tmp), or 2,6-lutidine} are combined in ca. 0.8 cm³ CD₂Cl₂ in a NMR tube fitted with a J.Young valve. ${}^{1}H$, ${}^{11}B$, ${}^{19}F$ and ${}^{31}P\{{}^{1}H\}$ NMR spectra are obtained. The solution is degassed in the NMR tube by three freeze-pump-thaw cycles, before being frozen and the head-space of the NMR tube filled with 1 bar H_2 (dried by passing through a P_2O_5 column). The NMR tube is allowed to warm to room temperature, shaken, and the resulting reaction monitored by ${}^{1}H$ and ${}^{11}B$ NMR spectroscopy. A final set of ${}^{1}H$, ${}^{11}B$, ${}^{19}F$ and ${}^{31}P\{{}^{1}H\}$ NMR spectra are then obtained.

$[(^{6}Bu)_{3}PH][HB(C_{6}F_{5})\{3,5-(CF_{3})_{2}C_{6}H_{3}\}(C_{6}Cl_{5})]$ $[(^{6}Bu)_{3}PH][H-3]$

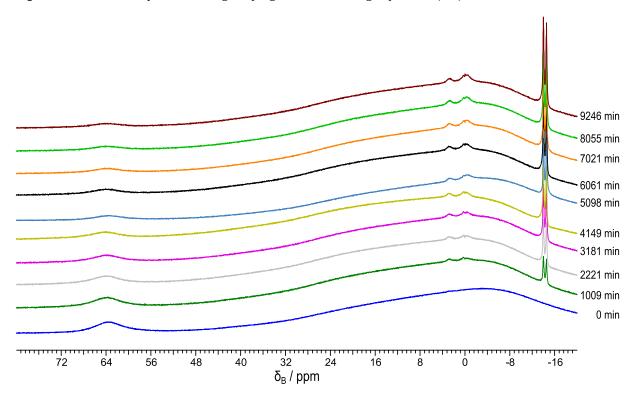
Spectral data at 57% conversion (164 hours reaction time).

¹H NMR (500.2 MHz, CD₂Cl₂, 25 °C, δ): +7.68 (s, 2H, Ar^{F6} 2,6-H), +7.47 (s, 1H, Ar^{F6} 4-H), +5.10 (d, ${}^{1}J_{HP}$ = 430 Hz, 1H), +4.08 (br.q, ${}^{1}J_{HB}$ = 88 Hz, 1H), +1.61 (d, ${}^{3}J_{HP}$ = 15.7 Hz, 27H); ¹¹B NMR (160.5 MHz, CD₂Cl₂, 25 °C, δ): -14.3 (d, ${}^{1}J_{BH}$ = 88 Hz); ¹⁹F NMR (470.7 MHz, CD₂Cl₂, 25 °C, δ): -62.3 (s, 6F, Ar^{F6} 3,5-CF₃), -130.8 (br.m, 2F, Ar^{F5} 2,6-F), -160.4 (t, ${}^{3}J_{FF}$ = 20.3 Hz, 1F, Ar^{F5} 4-F), -167.2 (m, 2F, Ar^{F5} 3,5-F); ³¹P{¹H} NMR (202.5 MHz, CD₂Cl₂, 25 °C, δ): +59.9 (s).

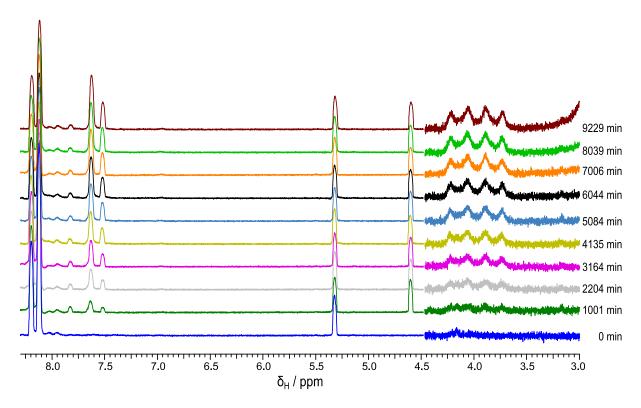
$[Me_4H_6C_5NH_2][HB(C_6F_5)\{3,5-(CF_3)_2C_6H_3\}(C_6Cl_5)]$ [tmp-H][H-3]


Spectral data at 38% conversion (164 hours reaction time); resonances for tmp correspond to a rapid equilibrium between [tmp–H]⁺ and free tmp.

¹H NMR (500.2 MHz, CD₂Cl₂, 25 °C, δ): +7.63 (s, 2H, Ar^{F6} 2,6-H), +7.52 (s, 1H, Ar^{F6} 4-H), +3.98 (br.q, ${}^{1}J_{HB}$ = 84 Hz, 1H), +2.90 (vbr.s, tmp NH₂), +1.67 (m, tmp 4-H), +1.42 (m, tmp 3,5-H), +1.17 (s, tmp 2,6-CH₃); ¹¹B NMR (160.5 MHz, CD₂Cl₂, 25 °C, δ): -13.9 (d, ${}^{1}J_{BH}$ = 84 Hz); ¹⁹F NMR (470.7 MHz, CD₂Cl₂, 25 °C, δ): -62.5 (s, 6F, Ar^{F6} 3,5-CF₃), -130.9 (br.m, 2F, Ar^{F5} 2,6-F), -162.9 (t, ${}^{3}J_{FF}$ = 20.3 Hz, 1F, Ar^{F5} 4-F), -165.9 (m, 2F, Ar^{F5} 3,5-F).


$[Me_2H_3C_5NH][HB(C_6F_5)\{3,5-(CF_3)_2C_6H_3\}(C_6Cl_5)]$ [lutidine-H][H-3]

Spectral data at 64% conversion (164 hours reaction time); resonances for lutidine correspond to a rapid equilibrium between [lutidine–H]⁺ and free lutidine.


¹H NMR (500.2 MHz, CD₂Cl₂, 25 °C, δ): +7.67 (s, 2H, Ar^{F6} 2,6-H), +7.62 (t, ${}^{3}J_{HH}$ = 7.7 Hz, lutidine 4-H), +7.45 (s, 1H, Ar^{F6} 4-H), +7.09 (d, ${}^{3}J_{HH}$ = 7.7 Hz, lutidine 3,5-H), +4.08 (br.q, ${}^{1}J_{HB}$ = 88 Hz, 1H), +2.50 (s, lutidine 2,6-CH₃); ¹¹B NMR (160.5 MHz, CD₂Cl₂, 25 °C, δ): -14.3 (d, ${}^{1}J_{BH}$ = 88 Hz); ¹⁹F NMR (470.7 MHz, CD₂Cl₂, 25 °C, δ): -62.4 (s, 6F, Ar^{F6} 3,5-CF₃), -131.0 (br.m, 2F, Ar^{F5} 2,6-F), -160.5 (t, ${}^{3}J_{FF}$ = 21.2 Hz, 1F, Ar^{F5} 4-F), -167.3 (m, 2F, Ar^{F5} 3,5-F).

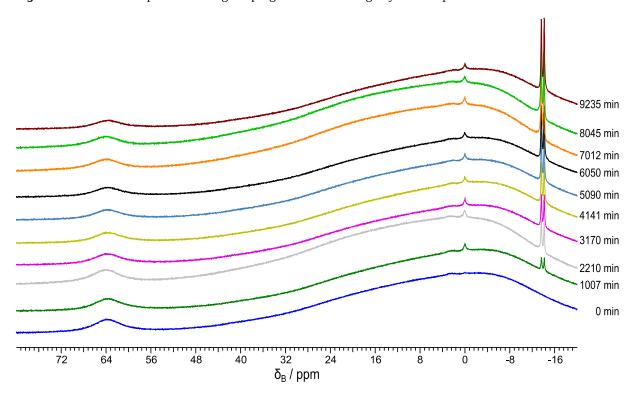

Figure S2a ¹H NMR spectra showing the progress of H₂ cleavage by the 3/P('Bu)₃ FLP

Figure S2b ¹¹B NMR spectra showing the progress of H₂ cleavage by the 3/P(^tBu)₃ FLP

Figure S3a ¹H NMR spectra showing the progress of H₂ cleavage by the 3/tmp FLP

Figure S3b ¹¹B NMR spectra showing the progress of H₂ cleavage by the 3/tmp FLP

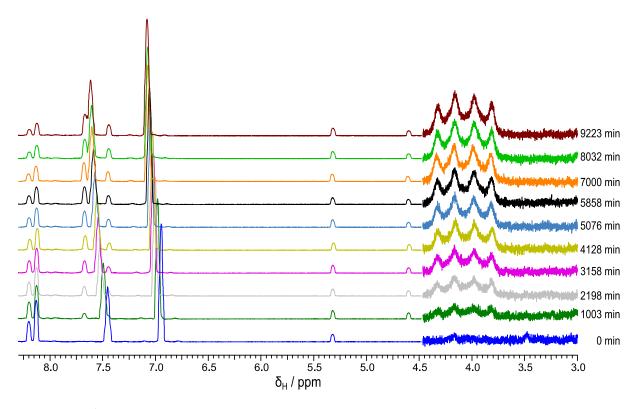
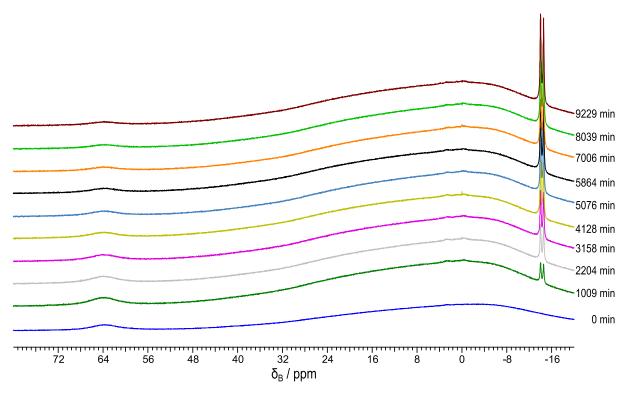
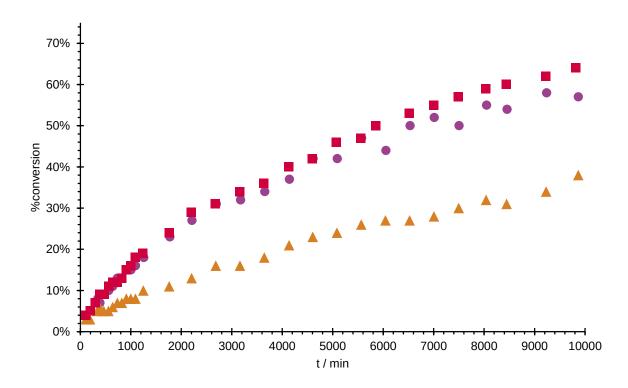




Figure S4a ¹H NMR spectra showing the progress of H₂ cleavage by the 3/lutidine FLP

Figure S4b 11 B NMR spectra showing the progress of H₂ cleavage by the 3/lutidine FLP

>90% consumed **3**, is converted to the target H_2 cleavage product $[H-3]^-$; non-negligible by-products are however observed in reactions where the Lewis base is $P(^tBu)_3$ (Figure S2) or tmp (Figure S3). The signals in the range δ_B -4 - +4 ppm are indicative of tetrahedral boron and it is speculated that these are the water adduct **3**–OH₂, or the hydroxide $[\mathbf{3}$ –OH] $^-$. Similarly, this explains the by-product resonances observable in aromatic region of the 1 H spectra.

Figure S5 Percentage conversion of **3** to [H–**3**]⁻ (monitored by ¹H NMR spectroscopy of Ar^{F6} 2,6-/4-H resonances), by reaction of a FLP with H₂ in CD₂Cl₂ at 20 °C, with varying Lewis base:

P(^tBu)₃, ▲ tmp, ■ lutidine.