Supplementary information

The 'C^{α}NN' motif: an intrinsic lover of sulfate and phosphateions

Tridip Sheet, Raja Banerjee*

Maulana Abul Kalam Azad University of Technology, West Bengal (Formerly Known as West Bengal University of Technology) BF-142,Sector-1, Salt Lake, Kolkata- 700064, INDIA

Telephone No: 91-33-23341021/1031; Fax: 91-33-2334-1030 Email: ban_raja@yahoo.com, banraja10@gmail.com

Short title: Anion-recognition peptide motif

* Correspondence to: Raja Banerjee, Maulana Abul Kalam Azad University of Technology, West Bengal, (Formerly known as West Bengal University of Technology) BF-142, Sector-1, Salt Lake, Kolkata-700064, India. E-mail: ban_raja@yahoo.com, banraja10@gmail.com

Figure S1: Design of peptides a) CPS224Ac, b) CPS226 and c) CPS228 by appending the 'C $^{\alpha}$ NN' sequences from the respective PDB (1MUG for CPS224Ac; 1YCC for CPS226 and 1JW9 for CPS228)

Figure S2: HPLC traces of the 18-residue peptides (CPS224Ac, CPS226 and CPS228) containing the naturally occurring 'C^{α}NN' motif sequences using gradient of 0-60% acetonitrile in water with 0.1% TFA in dual λ absorbance detector (at 210 and 275 nm).

Figure S3: HPLC traces of the short 7-residue peptides (SCPS224Ac, SCPS226 and SCPS228) containing the naturally occurring 'C^{α}NN' motif sequences using gradient of 0-60% acetonitrile in water with 0.1% TFA in dual λ absorbance detector (at 210 and 275 nm).

Figure S4: MALDI-MS (in the positive mode) traces of the 18-residue peptides [CPS224Ac (MW: 1757), CPS226 (MW: 1674) and CPS228 (MW: 1671)] containing the naturally occurring 'C^{α}NN' motif sequences showing the m/z peaks (z=1) corresponding to respective M+H⁺; M+Na⁺ and M+K⁺ ions

Figure S5: MALDI-MS (in the positive mode) traces of the short 7-residue peptides [SCPS224Ac (MW: 776), SCPS226 (MW: 693) and SCPS228 (MW:690)] containing the naturally occurring 'C^{α}NN' motif sequences showing the m/z peaks (z=1) corresponding to respective M+H⁺; M+Na⁺ and M+K⁺ ions

Figure S6: TOCSY experiments of CPS224Ac and sulfate added species of CPS224Ac (1:3 M peptide : anion). The 'C^{α}NN' motif sequence (-Leu-Gly-Lys-Gln-) present at N-terminus is labeled.

Figure S7: TOCSY experiments of CPS226 and sulfate added species of CPS226 (1:3 M peptide : anion). The 'C^{α}NN' motif sequence (–Gly-Ser-Ala-Lys-) present at the N-terminus is labeled.

Figure S8: TOCSY experiments of CPS228 and sulfate ion added species of CPS228 (1:3 M peptide : anion). The 'C^{α}NN' motif sequence (-Leu-Gly-Gly-Leu-) present at N-terminus is labeled.

Figure S9: TOCSY experiments of SCPS224Ac. The residues of the sequence (-Leu-Gly-Lys-Gln-Ala-Gly-Tyr) are labeled with one letter symbol.

Figure S10: TOCSY experiments of SCPS226 and sulfate added species of SCPS226 (1:3 M peptide : anion). The residues of the sequence (-Gly-Ser-Ala-Lys-Ala-Gly-Tyr) are labeled with one letter symbol.

Figure S11: TOCSY experiments of SCPS228. The residues of the sequence (-Leu-Gly-Gly-Leu-Ala-Gly-Tyr-) are labeled with one letter symbol.

Figure S12: Comparison of X-H---O (where $X = C_{-1}^{\alpha}/N_0/N_{+1}$) distance and angle constraints of the anion added ' $C^{\alpha}NN$ ' sequences between the respective crystal structures (obtained from pdb) and the structures obtained from Molecular docking experiment for the designed chimeric peptide sequences (CPS224Ac, CPS226 and CPS228). a) C_{-1}^{α} -H---O distance; b) C_{-1}^{α} -H---O angle; c) N_0 -H---O distance; d) N_0 -H---O angle; e) N_{+1} -H---O distance, f) N_{+1} -H---O angle.

Figure S13 c) ESI-MS result showing the binding of the sulfate ion with CPS224Ac (Inset: isotopic distribution of m/z 926.5 showing the difference of 0.5, indicating doubly charged species); d) ESI-MS result showing the binding of phosphate ion with CPS224Ac (Inset: isotopic distribution of m/z 926.4 showing the difference of 0.5, indicating doubly charged species) [Reproduced from Figure 1 of Plos One 8(3), (2013) e57366 by Tridip Sheet, Subhrangsh Supakar & **Raja Banerjee*** (http://www.ncbi.nlm.nih.gov/pubmed/23516403) under the terms of the Creative Commons Attribution License, which permits, unrestricted use, distribution, and reproduction in any medium]

Figure S14: CD spectra of peptides in fully aqueous condition at 298 K in absence as well as in presence of anions. a) CPS226 with sulfate; b) CPS226 with phosphate and c) CPS224Ac with phosphate.

Figure S15: CD spectra of short peptides along with their sulfate added species and free tyrosine recorded at 278 K in fully aqueous condition; a) SCPS224Ac; b) SCPS226; c) SCPS228; d) tyrosine in aqueous solution.

Figure S16: Change of ellipticity at 222nm (θ_{222}) with respect to added anion (sulfate and phosphate) in CD measurement of peptides a) CPS224Ac and b) CPS228 along with their respective anion dependent K_d

Figure S17: 1D spectra of main-chain HN region A)CPS226 and B) SCPS226 showing the effect of addition of sulfate ion to it in fully aqueous condition.

Table-S1. Comparison of sulfate ion bound 'G-S-A-K' motif structure obtained from NMR experiments of CPS226 with that of crystal structure in 1YCC deposited in pdb. Propagation of H-bonds in the crystal structure was calculated using DSSP Program (residue, secondary structure, propagation of H-bonds).

GSAK motif	Structures of the motif deposited in pdb**							Experimental study of the motif in solution		
	Distance (Å)		Dihedral angle			H-bond observed (DSSP) ⁴ ⁶	Expecte d NN noe in NMR	Observed NMR parameters		Proposed H-bond
	Residue	NH- NH	Resid ue	φ	ψ	CO→N H		Residu e	NH-NH noe	$\begin{array}{c} \text{CO} \rightarrow \text{NH} \\ (i \rightarrow i + 3) \& \end{array}$
		(i,i+1)				$(i \rightarrow i+4)$ $(i \rightarrow i+3)$ a b c			(i,i+1)	(i→i+4)
** 1YCC	G/S (1/2)	3.86	G1	-131.8	-146.2	G	weak (w)			
(SO ₄ ²⁻ bound)	S/A (2/3)	4.18	S2	-97.3	115.6	S > A H>	weak (w)			
	A/K (3/4)	2.95	A3	-67.7	-35.0	K H> K H>	strong (s)			
	K/ K (4/5)	2.27	K4	-68.1	-47.8	G H X A H X	strong (s)			
			K5	-57.8	-39.9					
CPS226	G/S (1/2)							G(1)	(1/2) weak	$O_1(SO_4^{2-}) \rightarrow A3$ $O_4(SO_4^{2-}) \rightarrow K4$
	S/A (2/3)							S(2)	(2/3) weak	$G1 \rightarrow A5$ $S2 \rightarrow B6$
	A/K (3/4)							A(3)	(3/4) strong	
	K/A (4/5)							K(4)	(4/5) strong	