Synthesis and molecular modeling studies of indole-based antitumor agents

Riham F. George,^a Siva S. Panda,^b El-Sayed M. Shalaby,^c Aladdin M. Srour,^d I. S. Ahmed Farag^c and Adel S. Girgis^{*e}

^a Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt

^bDepartment of Chemistry & Physics, Augusta University, Augusta, GA 30912, USA

^c X-Ray Crystallography Lab., Physics Division, National Research Centre, Dokki, Giza 12622, Egypt

^d Therapeutical Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt

^e Pesticide Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt

* Corresponding author: E-mail: girgisas10@yahoo.com, Fax: +33370931, Tel: +01220447199

Supporting information

Table titles

Table S1. Experimental and optimized intramolecular geometrical parameters (bondlengths, Å) of compounds 46 and 48.

 Table S2. Experimental and optimized intramolecular geometrical parameters (bond angles, °) of compounds 46 and 48.

Table S3. Molecular descriptor values of the BMLR-QSAR model for the antitumor active indole-based compounds **30**, **31**, **33-40**, **42-49** and **51-63** against HeLa (cervical carcinoma) cell line.

 Table S4. Crystal data and refinement details for compounds 46 and 48.

Figure captions

Figure S1. IR spectrum of compound 14 (KBr pellet).

- Figure S2. ¹H-NMR spectrum of compound 14 in CDCl₃.
- Figure S3. ¹³C-NMR spectrum of compound 14 in CDCl₃.
- Figure S4. IR spectrum of compound 19 (KBr pellet).
- Figure S5. ¹H-NMR spectrum of compound 19 in CDCl₃.
- Figure S6. ¹³C-NMR spectrum of compound 19 in CDCl₃.
- Figure S7. IR spectrum of compound 30 (KBr pellet).
- Figure S8. ¹H-NMR spectrum of compound 30 in CDCl₃.
- Figure S9. ¹³C-NMR spectrum of compound 30 in CDCl₃.
- Figure S10. IR spectrum of compound 31 (KBr pellet).
- Figure S11. ¹H-NMR spectrum of compound 31 in CDCl₃.
- Figure S12. ¹³C-NMR spectrum of compound 31 in CDCl₃.
- Figure S13. IR spectrum of compound 32 (KBr pellet).
- Figure S14. ¹H-NMR spectrum of compound 32 in CDCl₃.
- Figure S15. ¹³C-NMR spectrum of compound 32 in CDCl₃.
- Figure S16. IR spectrum of compound 33 (KBr pellet).
- Figure S17. ¹H-NMR spectrum of compound 33 in CDCl₃.
- Figure S18. ¹³C-NMR spectrum of compound 33 in DMSO- d_6 .
- Figure S19. IR spectrum of compound 34 (KBr pellet).
- **Figure S20.** ¹H-NMR spectrum of compound **34** in CDCl₃.
- Figure S21. ¹³C-NMR spectrum of compound 34 in CDCl₃.
- Figure S22. IR spectrum of compound 35 (KBr pellet).
- Figure S23. ¹H-NMR spectrum of compound 35 in CDCl₃.
- Figure S24. ¹³C-NMR spectrum of compound 35 in CDCl₃.
- Figure S25. IR spectrum of compound 36 (KBr pellet).
- Figure S26. ¹H-NMR spectrum of compound 36 in CDCl₃.
- Figure S27. ¹³C-NMR spectrum of compound 36 in DMSO- d_6 .
- Figure S28. IR spectrum of compound 37 (KBr pellet).
- Figure S29. ¹H-NMR spectrum of compound 37 in CDCl₃.
- Figure S30. ¹³C-NMR spectrum of compound 37 in DMSO- d_6 .
- Figure S31. IR spectrum of compound 38 (KBr pellet).

- Figure S32. ¹H-NMR spectrum of compound 38 in CDCl₃.
- Figure S33. ¹³C-NMR spectrum of compound 38 in DMSO- d_6 .
- Figure S34. IR spectrum of compound 39 (KBr pellet).
- Figure S35. ¹H-NMR spectrum of compound **39** in CDCl₃.
- Figure S36. ¹³C-NMR spectrum of compound 39 in DMSO- d_6 .
- Figure S37. IR spectrum of compound 40 (KBr pellet).
- Figure S38. ¹H-NMR spectrum of compound 40 in CDCl₃.
- Figure S39. ¹³C-NMR spectrum of compound 40 in DMSO- d_6 .
- Figure S40. IR spectrum of compound 41 (KBr pellet).
- Figure S41. ¹H-NMR spectrum of compound 41 in CDCl₃.
- Figure S42. ¹³C-NMR spectrum of compound 41 in CDCl₃.
- Figure S43. IR spectrum of compound 42 (KBr pellet).
- **Figure S44.** ¹H-NMR spectrum of compound **42** in CDCl₃.
- Figure S45. ¹³C-NMR spectrum of compound 42 in DMSO- d_6 .
- Figure S46. IR spectrum of compound 43 (KBr pellet).
- Figure S47. ¹H-NMR spectrum of compound 43 in CDCl₃.
- Figure S48. ¹³C-NMR spectrum of compound 43 in CDCl₃.
- Figure S49. IR spectrum of compound 44 (KBr pellet).
- Figure S50. ¹H-NMR spectrum of compound 44 in CDCl₃.
- Figure S51. ¹³C-NMR spectrum of compound 44 in CDCl₃.
- Figure S52. IR spectrum of compound 45 (KBr pellet).
- Figure S53. ¹H-NMR spectrum of compound 45 in CDCl₃.
- Figure S54. ¹³C-NMR spectrum of compound 45 in CDCl₃.
- Figure S55. IR spectrum of compound 46 (KBr pellet).
- Figure S56. ¹H-NMR spectrum of compound 46 in CDCl₃.
- Figure S57. ¹³C-NMR spectrum of compound 46 in CDCl₃.
- Figure S58. IR spectrum of compound 47 (KBr pellet).
- **Figure S59.** ¹H-NMR spectrum of compound **47** in CDCl₃.
- Figure S60. ¹³C-NMR spectrum of compound 47 in CDCl₃.
- Figure S61. IR spectrum of compound 48 (KBr pellet).
- Figure S62. ¹H-NMR spectrum of compound 48 in CDCl₃.

- Figure S63. ¹³C-NMR spectrum of compound 48 in CDCl₃.
- Figure S64. IR spectrum of compound 49 (KBr pellet).
- Figure S65. ¹H-NMR spectrum of compound 49 in CDCl₃.
- Figure S66. ¹³C-NMR spectrum of compound 49 in DMSO- d_6 .
- Figure S67. IR spectrum of compound 50 (KBr pellet).
- Figure S68. ¹H-NMR spectrum of compound 50 in CDCl₃.
- Figure S69. ¹³C-NMR spectrum of compound 50 in DMSO- d_6 .
- Figure S70. IR spectrum of compound 51 (KBr pellet).
- Figure S71. ¹H-NMR spectrum of compound 51 in CDCl₃.
- Figure S72. ¹³C-NMR spectrum of compound 51 in DMSO- d_6 .
- Figure S73. IR spectrum of compound 52 (KBr pellet).
- Figure S74. ¹H-NMR spectrum of compound 52 in CDCl₃.
- Figure S75. ¹³C-NMR spectrum of compound 52 in DMSO- d_6 .
- Figure S76. IR spectrum of compound 53 (KBr pellet).
- Figure S77. ¹H-NMR spectrum of compound 53 in CDCl₃.
- Figure S78. ¹³C-NMR spectrum of compound 53 in CDCl₃.
- Figure S79. IR spectrum of compound 54 (KBr pellet).
- Figure S80. ¹H-NMR spectrum of compound 54 in CDCl₃.
- Figure S81. ¹³C-NMR spectrum of compound 54 in CDCl₃.
- Figure S82. IR spectrum of compound 55 (KBr pellet).
- Figure S83. ¹H-NMR spectrum of compound 55 in CDCl₃.
- Figure S84. ¹³C-NMR spectrum of compound 55 in DMSO- d_6 .
- Figure S85. IR spectrum of compound 56 (KBr pellet).
- Figure S86. ¹H-NMR spectrum of compound 56 in CDCl₃.
- Figure S87. ¹³C-NMR spectrum of compound 56 in DMSO- d_6 .
- Figure S88. IR spectrum of compound 57 (KBr pellet).
- **Figure S89.** ¹H-NMR spectrum of compound **57** in CDCl₃.
- Figure S90. ¹³C-NMR spectrum of compound 57 in CDCl₃.
- Figure S91. IR spectrum of compound 58 (KBr pellet).
- Figure S92. ¹H-NMR spectrum of compound 58 in CDCl₃.
- Figure S93. ¹³C-NMR spectrum of compound 58 in DMSO- d_6 .

Figure S94. IR spectrum of compound 59 (KBr pellet).

Figure S95. ¹H-NMR spectrum of compound 59 in CDCl₃.

Figure S96. ¹³C-NMR spectrum of compound 59 in DMSO- d_6 .

Figure S97. IR spectrum of compound 60 (KBr pellet).

Figure S98. ¹H-NMR spectrum of compound 60 in CDCl₃.

Figure S99. ¹³C-NMR spectrum of compound 60 in CDCl₃.

Figure S100. IR spectrum of compound 61 (KBr pellet).

Figure S101. ¹H-NMR spectrum of compound 61 in CDCl₃.

Figure S102. IR spectrum of compound 62 (KBr pellet).

Figure S103. ¹H-NMR spectrum of compound 62 in CDCl₃.

Figure S104. ¹³C-NMR spectrum of compound 62 in DMSO- d_6 .

Figure S105. IR spectrum of compound 63 (KBr pellet).

Figure S106. ¹H-NMR spectrum of compound 63 in CDCl₃.

Figure S107. ¹³C-NMR spectrum of compound 63 in CDCl₃.

Figure 108. A projection of the optimized structure of compound **46** by semi-empirical AM1.

Figure 109. A projection of the optimized structure of compound **46** by semi-empirical PM3.

Figure 110. A projection of the optimized structure of compound 48 by semi-empirical AM1.

Figure 111. A projection of the optimized structure of compound **48** by semi-empirical PM3.

Figure 112. Overlay diagram of compound **46**, drawn so that the central pyrrolidine rings are overlapped (red, X-ray; green, AM1; and blue, PM3).

Figure 113. Overlay diagram of compound **48**, drawn so that the central pyrrolidine rings are overlapped (red, X-ray; green, AM1; and blue, PM3).

Figure 114. Dose-response curve for the synthesized compounds 30-63 against HeLa (cervical cancer) cell line.

Figure 115. Dose-response curve for the synthesized compounds 30-63 against HepG2 (liver cancer) cell line.

Figure S116. (A) Constraint distances "H – PosIon-1 = 9.375, H – PosIon-2 = 4.037, H – HBA = 6.763, PosIon-1 – PosIon-2 = 5.848, PosIon-1 – HBA = 3.869, PosIon-2 – HBA = 4.300 Å" and (B) constraint angles "H – PosIon-1 – PosIon-2 = 15.24, H – PosIon-1 – HBA = 47.33, PosIon-2 – H – PosIon-1 = 37.11 °" of the generated 3D-pharmacophore for the synthesized bio-active spiro-compounds **30-63** against HeLa (cervical carcinoma) cell line which contains two positive ionizables (PosIon-1, PosIon-2; red), one hydrophobic (H; light blue) and one hydrogen bonding acceptor (HBA; green).

Figure S117. 3D-pharmacophore mapped on the synthesized bio-active spiro-compounds **30-63** against HeLa (cervical carcinoma) cell line.

Coometrie norometers	(Compound 46		Compound 48		
Geometric parameters	Exp. X-ray	AM1	PM3	Exp. X-ray	AM1	PM3
F1—C21	1.366	1.354	1.343	1.388	1.354	1.343
F2—C31	1.376	1.354	1.343	1.374	1.354	1.343
C1—C2	1.519	1.524	1.519	1.517	1.524	1.519
C1—C14	1.554	1.582	1.562	1.559	1.582	1.562
C1—C24	1.585	1.575	1.578	1.575	1.575	1.578
C1—N1	1.472	1.473	1.508	1.445	1.473	1.508
C2—C3	1.356	1.381	1.384	1.384	1.381	1.384
C2—C7	1.391	1.432	1.412	1.389	1.432	1.412
C3—C4	1.398	1.403	1.397	1.411	1.403	1.397
C4—C5	1.362	1.391	1.390	1.326	1.391	1.390
C5—C6	1.369	1.400	1.396	1.400	1.400	1.396
C6—C7	1.381	1.395	1.389	1.355	1.395	1.389
C7—N3	1.402	1.409	1.437	1.386	1.409	1.437
C8—N3	1.492	1.445	1.478	1.528	1.445	1.479
C8—N4	1.455	1.472	1.493	1.454	1.472	1.493
C9—C10	1.500	1.530	1.526	1.511	1.530	1.526
C9—N4	1.413	1.457	1.488	1.472	1.457	1.488

Table S1. Experimental and optimized intramolecular geometrical parameters (bond lengths, Å) of compounds 46 and 48.

C10—C11	1.512	1.515	1.521	1.459	1.515	1.521
C11—C12	1.504	1.514	1.521	1.476	1.514	1.521
C12—C13	1.489	1.530	1.526	1.492	1.530	1.526
C13—N4	1.450	1.454	1.488	1.423	1.454	1.488
C14—O1	1.213	1.238	1.217	1.223	1.238	1.218
C14—N3	1.372	1.407	1.437	1.377	1.407	1.437
C15—N1	1.454	1.439	1.471	1.474	1.439	1.471
C16—C17	1.532	1.538	1.528	1.517	1.538	1.528
C16—N1	1.462	1.457	1.482	1.416	1.457	1.482
C17—C18	1.508	1.489	1.502	1.497	1.489	1.502
C17—C24	1.575	1.558	1.567	1.565	1.558	1.567
C18—C19	1.380	1.400	1.397	1.389	1.400	1.397
C18—C23	1.388	1.404	1.398	1.374	1.404	1.398
C19—C20	1.390	1.391	1.388	1.385	1.391	1.388
C20—C21	1.368	1.406	1.400	1.347	1.406	1.400
C21—C22	1.340	1.407	1.400	1.343	1.407	1.400
C22—C23	1.406	1.390	1.389	1.360	1.390	1.389
C24—C25	1.537	1.525	1.542	1.528	1.525	1.542
C24—C35	1.530	1.538	1.541	1.546	1.538	1.541
C25—C26	1.492	1.483	1.496	1.482	1.483	1.496

C25—O2	1.207	1.239	1.217	1.213	1.239	1.217
C26—C27	1.332	1.347	1.343	1.324	1.347	1.343
C26—C34	1.512	1.498	1.493	1.489	1.498	1.493
C27—C28	1.477	1.454	1.462	1.461	1.454	1.462
C28—C29	1.383	1.401	1.397	1.385	1.401	1.397
C28—C33	1.406	1.405	1.400	1.419	1.405	1.400
C29—C30	1.399	1.391	1.388	1.367	1.391	1.388
C30—C31	1.350	1.406	1.400	1.377	1.406	1.400
C31—C32	1.345	1.408	1.401	1.343	1.408	1.401
C32—C33	1.384	1.389	1.388	1.391	1.389	1.388
C34—N2	1.467	1.454	1.487	1.462	1.453	1.487
C35—N2	1.465	1.452	1.485	1.466	1.452	1.485
C36—C37	1.504	1.520	1.517	1.524	1.528	1.527
C36—N2	1.469	1.452	1.487	1.476	1.450	1.485
C37—C38				1.460	1.506	1.512
RMSE		0.0256	0.0269		0.0312	0.0329
Maximum difference		0.067	0.075		0.083	0.066

Coometrie normaters		Compound 46				Compound 48		
Geometric parameters	Exp. X-ray	AM1	PM3	Exp. X-ray	AM1	PM3		
C2-C1-C14	102.2	100.7	100.9	99.5	100.7	100.9		
C2—C1—C24	117.8	113.7	114.4	119.5	113.7	114.4		
C14—C1—C24	110.6	112.4	114.7	111.7	112.4	114.7		
C2C1N1	109.2	110.1	107.5	110.7	110.1	107.5		
C14—C1—N1	114.5	112.0	113.1	112.7	112.0	113.1		
C24—C1—N1	103.0	107.9	106.2	103.1	107.9	106.2		
C1—C2—C3	132.4	129.9	129.1	130	129.9	129.1		
C1—C2—C7	108.3	109.6	110.8	110.1	109.6	110.8		
C3—C2—C7	118.9	120.4	120.0	119.5	120.4	120.0		
C2—C3—C4	120.3	118.9	118.7	118.1	118.9	118.7		
C3—C4—C5	119.2	120.7	120.9	121	120.7	120.9		
C4—C5—C6	122.1	121.5	121.1	121.3	121.5	121.1		
C5—C6—C7	117.7	118.1	117.8	118.4	118.1	117.8		
C2—C7—C6	121.7	120.4	121.5	121.6	120.4	121.5		
C2—C7—N3	110.4	110.4	110.0	110.6	110.4	110.0		
C6—C7—N3	127.7	129.1	128.6	127.7	129.1	128.6		
N3—C8—N4	118.7	116.3	108.6	116.6	116.3	108.6		

 Table S2. Experimental and optimized intramolecular geometrical parameters (bond angles, °) of compounds 46 and 48.

C10—C9—N4	112.3	115.4	113.5	110.8	115.4	113.5
C9-C10-C11	111.5	110.7	110.8	112.8	110.7	110.8
C10-C11-C12	109.6	111.2	110.9	112.9	111.2	110.9
C11—C12—C13	112.2	111.1	111.1	113.8	111.1	111.1
C12—C13—N4	109.5	115.6	113.8	109.8	115.6	113.8
C1C14O1	126.4	126.6	129.1	126.9	126.6	129.1
C1C14N3	107.5	109.1	109.0	109.7	109.1	109.0
O1C14N3	126.1	124.0	121.8	123.4	124.0	121.8
C17—C16—N1	103.9	107.0	104.0	105.8	107.0	104.0
C16—C17—C18	115.4	113.7	113.0	114.4	113.7	113.0
C16—C17—C24	104.8	105.0	104.6	103.2	105.0	104.7
C18—C17—C24	116.3	116.5	116.0	117.3	116.5	116.0
C17—C18—C19	122.5	122.9	121.5	124.6	122.9	121.5
C17—C18—C23	119.2	118.3	119.2	117.5	118.3	119.2
C19—C18—C23	118.3	118.8	119.3	117.9	118.8	119.3
C18—C19—C20	121.1	121.0	121.0	120.8	121.0	121.0
C19—C20—C21	118.6	119.6	118.9	117.8	119.6	118.9
C20—C21—C22	122.4	120.0	121.0	123.1	120.0	121.0
C20—C21—F1	117.6	120.0	119.5	117.1	120.0	119.5
C22—C21—F1	120.0	120.0	119.5	119.5	120.0	119.5

C21—C22—C23	119.1	119.4	119.1	119	119.4	119.1
C22—C23—C18	120.4	121.1	120.7	121.2	121.1	120.7
C17—C24—C1	103.7	103.8	103.3	104.1	103.8	103.3
C17—C24—C25	110.2	110.0	111.5	111.5	110.0	111.5
C1—C24—C25	108.4	111.5	111.8	108.7	111.5	111.8
C17—C24—C35	113.6	110.0	109.2	113.2	110.0	109.2
C1—C24—C35	113.5	113.0	114.3	112.3	113.0	114.3
C25—C24—C35	107.3	108.4	106.7	107	108.4	106.6
C24—C25—C26	117.1	118.1	117.3	118.9	118.1	117.3
C24—C25—O2	122.6	121.4	122.4	120	121.4	122.4
C26—C25—O2	120.3	120.5	120.3	121	120.5	120.2
C25—C26—C27	117.7	118.7	119.2	117.4	118.7	119.2
C25—C26—C34	119.8	118.4	115.9	118.2	118.4	115.9
C27—C26—C34	122.4	122.9	124.9	124.4	122.9	124.9
C26—C27—C28	128.2	127.0	127.6	126.5	127.0	127.6
C27—C28—C29	123.6	122.1	122.2	125.3	122.1	122.2
C27—C28—C33	119.2	118.8	118.2	118.2	118.8	118.2
C29—C28—C33	117.2	119.2	119.5	116.5	119.2	119.5
C28—C29—C30	121.6	120.9	120.8	122.2	120.9	120.8
C29—C30—C31	117.4	119.5	119.0	118.6	119.5	119.0

C30—C31—C32	124.4	120.2	121.1	123.3	120.2	121.1
C30—C31—F2	117.3	119.9	119.5	118.1	119.9	119.5
C32—C31—F2	118.2	119.9	119.4	118.5	119.9	119.4
C31—C32—C33	117.9	119.5	119.0	117.8	119.5	119.0
C28—C33—C32	121.3	120.8	120.6	121.7	120.8	120.6
C26—C34—N2	111.5	113.5	110.7	112.2	113.5	110.6
C24—C35—N2	109.8	112.5	112.2	109	112.5	112.1
C37—C36—N2	113.5	117.8	116.4	110.3	117.7	116.3
C1—N1—C16	106.0	109.3	108.7	106.7	109.3	108.7
C1—N1—C15	114.4	116.7	118.6	115.7	116.7	118.6
C16—N1—C15	113.9	114.4	114.5	114.7	114.4	114.5
C36—N2—C34	111.4	113.9	113.6	113.1	114.1	113.7
C36—N2—C35	113.4	113.8	113.7	111.8	113.9	113.9
C34—N2—C35	107.8	112.1	112.6	108	112.1	112.6
C8—N3—C7	124.1	125.5	122.6	123.3	125.5	122.6
C8—N3—C14	123.3	124.3	124.3	125.4	124.4	124.3
C7—N3—C14	111.5	110.1	108.3	110.1	110.1	108.3
C8—N4—C13	113.7	114.6	114.4	112.7	111.7	114.4
C8—N4—C9	114.3	111.7	113.6	117.3	114.6	113.5
C13—N4—C9	111.7	111.3	111.7	111.8	111.3	111.7

C36—C37—C38	 		113.3	110.4	110.6
RMSE	 2.0361	2.3048		2.1406	2.2722
Maximum difference	 6.1	10.1		7.4	8.0

Fntry	Compd	Descriptors ^a							
Liiti y	Compa.	D ₁	D ₂	D ₃	D_4	D ₅			
1	30	3	136.7752	0	198.5068	0			
2	31	3	136.6096	0	198.9305	0			
3	33	3	136.7861	0	200.3036	0			
4	34	3	136.3403	0	198.6065	0			
5	35	3	136.6457	0	198.5477	0			
6	36	3	136.6001	0	199.3658	0			
7	37	3	136.8132	0	200.4607	0			
8	38	3	136.7001	0	200.1806	0			
9	39	3	136.6039	0	199.6096	0			
10	40	3	136.7263	0	200.3751	0			
11	42	3	136.4878	0	199.1451	0			
12	43	3	136.3863	2	199.4495	0			
13	44	3	136.3733	2	199.6382	0			
14	45	3	136.608	2	198.6234	0			
15	46	3	136.4379	2	199.2208	0			
16	47	3	136.5666	2	199.5591	0			
17	48	3	136.7948	2	199.3765	0			
18	49	3	136.7274	2	200.4381	0			
19	51	3	136.8106	2	199.4803	0			
20	52	3	136.4403	0	199.0356	0			
21	53	3	136.6514	0	200.3557	0			
22	54	3	136.5028	0	198.4583	0			
23	55	3	136.8162	0	200.0913	0			
24	56	3	136.3108	0	199.4149	0			
25	57	3	136.6281	0	200.6326	0			
26	58	3	136.3404	0	200.0663	0			

Table S3. Molecular descriptor values of the BMLR-QSAR model for the antitumor active indole-based compounds 30, 31, 33-40, 42-49 and 51-63 against HeLa (cervical carcinoma) cell line.

27	59	3	136.7904	0	199.6677	0
28	60	7	136.4145	0	199.7037	0
29	61	7	136.0955	0	198.4843	0
30	62	9	136.6493	0	199.747	68.44892
31	63	9	136.4786	0	198.6001	0

^a D_1 = Number of double bonds, D_2 = Max. n-n repulsion for bond C-C, D_3 = Number of F atoms, D_4 = Max. e-e repulsion for bond C-O, D_5 = HBSA H-bonding surface area (MOPAC PC).

Parameter	Compd. 46	Compd. 48
Chemical formula	$C_{37}H_{40}F_2N_4O_2\\$	$C_{38}H_{42}F_2N_4O_2\\$
$M_{ m r}$	610.73	624.76
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$
<i>a</i> , <i>b</i> , <i>c</i> (Å)	12.1284 (4), 15.8117	12.3371 (4), 16.2079
	(6), 17.2351 (7)	(7), 17.0271 (9)
β (°)	101.641 (2)	100.522 (2)
$V(\text{\AA}^3)$	3237.2 (2)	3347.5 (3)
Ζ	4	4
$\mu (mm^{-1})$	0.09	0.09
Crystal size (mm)	$0.16 \times 0.15 \times 0.12$	$0.25 \times 0.18 \times 0.15$
Crystal color	Colorless	Colorless
No. of measured, independent and	10280, 9953, 4135	14424, 8040, 4203
observed [$I > 2.0\sigma(I)$] reflections		
R _{int}	0.056	0.044
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.052, 0.093, 1.10	0.068, 0.131, 1.01
No. of reflections, parameters	4135, 406	4203, 415
$\Delta \rho_{max}, \Delta \rho_{min} \ (e \ \text{\AA}^{-3})$	0.24, -0.25	0.24, -0.31
CCDC Number	CCDC 1455157	CCDC 1455158

 Table S4. Crystal data and refinement details for compounds 46 and 48.

Figure S1. IR spectrum of compound 14 (KBr pellet).

Figure S2. ¹H-NMR spectrum of compound 14 in CDCl₃.

Figure S3. ¹³C-NMR spectrum of compound 14 in CDCl₃.

Figure S4. IR spectrum of compound 19 (KBr pellet).

Figure S5. ¹H-NMR spectrum of compound 19 in CDCl₃.

Figure S6. ¹³C-NMR spectrum of compound 19 in CDCl₃.

Figure S7. IR spectrum of compound 30 (KBr pellet).

Figure S8. ¹H-NMR spectrum of compound 30 in CDCl₃.

Figure S9. ¹³C-NMR spectrum of compound 30 in CDCl₃.

Figure S10. IR spectrum of compound 31 (KBr pellet).

Figure S11. ¹H-NMR spectrum of compound **31** in CDCl₃.

Figure S12. ¹³C-NMR spectrum of compound 31 in CDCl₃.

Figure S13. IR spectrum of compound 32 (KBr pellet).

Figure S14. ¹H-NMR spectrum of compound 32 in CDCl₃.

Figure S15. ¹³C-NMR spectrum of compound 32 in CDCl₃.

Figure S16. IR spectrum of compound 33 (KBr pellet).

Figure S17. ¹H-NMR spectrum of compound **33** in CDCl₃.

Figure S18. ¹³C-NMR spectrum of compound **33** in DMSO- d_6 .

Figure S19. IR spectrum of compound 34 (KBr pellet).

Figure S20. ¹H-NMR spectrum of compound 34 in CDCl₃.

Figure S21. ¹³C-NMR spectrum of compound 34 in CDCl₃.

Figure S22. IR spectrum of compound 35 (KBr pellet).

Figure S23. ¹H-NMR spectrum of compound **35** in CDCl₃.

Figure S24. ¹³C-NMR spectrum of compound 35 in CDCl₃.

Figure S25. IR spectrum of compound 36 (KBr pellet).

Figure S26. ¹H-NMR spectrum of compound 36 in CDCl₃.

Figure S27. ¹³C-NMR spectrum of compound **36** in DMSO- d_6 .

Figure S28. IR spectrum of compound 37 (KBr pellet).

Figure S29. ¹H-NMR spectrum of compound 37 in CDCl₃.

Figure S30. ¹³C-NMR spectrum of compound **37** in DMSO- d_6 .

Figure S31. IR spectrum of compound 38 (KBr pellet).

Figure S32. ¹H-NMR spectrum of compound 38 in CDCl₃.

Figure S33. ¹³C-NMR spectrum of compound **38** in DMSO- d_6 .

Figure S34. IR spectrum of compound 39 (KBr pellet).

Figure S35. ¹H-NMR spectrum of compound **39** in CDCl₃.

Figure S36. ¹³C-NMR spectrum of compound **39** in DMSO- d_6 .

Figure S37. IR spectrum of compound 40 (KBr pellet).

Figure S38. ¹H-NMR spectrum of compound 40 in CDCl₃.

Figure S39. ¹³C-NMR spectrum of compound **40** in DMSO- d_6 .

Figure S40. IR spectrum of compound 41 (KBr pellet).

Figure S41. ¹H-NMR spectrum of compound 41 in CDCl₃.

Figure S42. ¹³C-NMR spectrum of compound 41 in CDCl₃.

Figure S43. IR spectrum of compound 42 (KBr pellet).

Figure S44. ¹H-NMR spectrum of compound 42 in CDCl₃.

Figure S45. ¹³C-NMR spectrum of compound **42** in DMSO- d_6 .

Figure S46. IR spectrum of compound 43 (KBr pellet).

Figure S47. ¹H-NMR spectrum of compound **43** in CDCl₃.

Figure S48. ¹³C-NMR spectrum of compound 43 in CDCl₃.

Figure S49. IR spectrum of compound 44 (KBr pellet).

Figure S50. ¹H-NMR spectrum of compound 44 in CDCl₃.

Figure S51. ¹³C-NMR spectrum of compound 44 in CDCl₃.

Figure S52. IR spectrum of compound 45 (KBr pellet).

Figure S53. ¹H-NMR spectrum of compound 45 in CDCl₃.

Figure S54. ¹³C-NMR spectrum of compound 45 in CDCl₃.

Figure S55. IR spectrum of compound 46 (KBr pellet).

Figure S56. ¹H-NMR spectrum of compound 46 in CDCl₃.

Figure S57. ¹³C-NMR spectrum of compound 46 in CDCl₃.

Figure S58. IR spectrum of compound 47 (KBr pellet).

Figure S59. ¹H-NMR spectrum of compound 47 in CDCl₃.

Figure S60. ¹³C-NMR spectrum of compound 47 in CDCl₃.

Figure S61. IR spectrum of compound 48 (KBr pellet).

Figure S62. ¹H-NMR spectrum of compound **48** in CDCl₃.

Figure S63. ¹³C-NMR spectrum of compound 48 in CDCl₃.

Figure S64. IR spectrum of compound 49 (KBr pellet).

Figure S65. ¹H-NMR spectrum of compound 49 in CDCl₃.

Figure S66. ¹³C-NMR spectrum of compound **49** in DMSO- d_6 .

Figure S67. IR spectrum of compound 50 (KBr pellet).

Figure S68. ¹H-NMR spectrum of compound 50 in CDCl₃.

Figure S69. ¹³C-NMR spectrum of compound **50** in DMSO- d_6 .

Figure S70. IR spectrum of compound 51 (KBr pellet).

Figure S71. ¹H-NMR spectrum of compound 51 in CDCl₃.

Figure S72. ¹³C-NMR spectrum of compound **51** in DMSO- d_6 .

Figure S73. IR spectrum of compound 52 (KBr pellet).

Figure S74. ¹H-NMR spectrum of compound **52** in CDCl₃.

Figure S75. ¹³C-NMR spectrum of compound **52** in DMSO- d_6 .

Figure S76. IR spectrum of compound 53 (KBr pellet).

Figure S77. ¹H-NMR spectrum of compound 53 in CDCl₃.

Figure S78. ¹³C-NMR spectrum of compound 53 in CDCl₃.

Figure S79. IR spectrum of compound 54 (KBr pellet).

Figure S80. ¹H-NMR spectrum of compound 54 in CDCl₃.

Figure S81. ¹³C-NMR spectrum of compound 54 in CDCl₃.

Figure S82. IR spectrum of compound 55 (KBr pellet).

Figure S83. ¹H-NMR spectrum of compound 55 in CDCl₃.

Figure S84. ¹³C-NMR spectrum of compound **55** in DMSO- d_6 .

Figure S85. IR spectrum of compound 56 (KBr pellet).

Figure S86. ¹H-NMR spectrum of compound 56 in CDCl₃.

Figure S87. ¹³C-NMR spectrum of compound **56** in DMSO- d_6 .

Figure S88. IR spectrum of compound 57 (KBr pellet).

Figure S89. ¹H-NMR spectrum of compound 57 in CDCl₃.

Figure S90. ¹³C-NMR spectrum of compound 57 in CDCl₃.

Figure S91. IR spectrum of compound 58 (KBr pellet).

Figure S92. ¹H-NMR spectrum of compound 58 in CDCl₃.

Figure S93. ¹³C-NMR spectrum of compound **58** in DMSO- d_6 .

Figure S94. IR spectrum of compound 59 (KBr pellet).

Figure S95. ¹H-NMR spectrum of compound 59 in CDCl₃.

Figure S96. ¹³C-NMR spectrum of compound **59** in DMSO- d_6 .

Figure S97. IR spectrum of compound 60 (KBr pellet).

Figure S98. ¹H-NMR spectrum of compound 60 in CDCl₃.

Figure S99. ¹³C-NMR spectrum of compound 60 in CDCl₃.

Figure S100. IR spectrum of compound 61 (KBr pellet).

Figure S101. ¹H-NMR spectrum of compound **61** in CDCl₃.

Figure S102. IR spectrum of compound 62 (KBr pellet).

Figure S103. ¹H-NMR spectrum of compound 62 in CDCl₃.

Figure S104. ¹³C-NMR spectrum of compound 62 in DMSO- d_6 .

Figure S105. IR spectrum of compound 63 (KBr pellet).

Figure S106. ¹H-NMR spectrum of compound 63 in CDCl₃.

Figure S107. ¹³C-NMR spectrum of compound 63 in CDCl₃.

Figure 108. A projection of the optimized structure of compound 46 by semi-empirical AM1.

Figure 109. A projection of the optimized structure of compound 46 by semi-empirical PM3.

Figure 110. A projection of the optimized structure of compound 48 by semi-empirical AM1.

Figure 111. A projection of the optimized structure of compound 48 by semi-empirical PM3.

Figure 112. Overlay diagram of compound 46, drawn so that the central pyrrolidine rings are overlapped (red, X-ray; green, AM1; and blue, PM3).

Figure 113. Overlay diagram of compound 48, drawn so that the central pyrrolidine rings are overlapped (red, X-ray; green, AM1; and blue, PM3).

0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0

10

5

20

15

25

Concentration (µg/ml)

30

35

40

45

50

Figure 114. Dose-response curve for the synthesized compounds 30-63 against HeLa (cervical cancer) cell line.

Figure 115. Dose-response curve for the synthesized compounds 30-63 against HepG2 (liver cancer) cell line.

Figure S116. (A) Constraint distances "H – PosIon-1 = 9.375, H – PosIon-2 = 4.037, H – HBA = 6.763, PosIon-1 – PosIon-2 = 5.848, PosIon-1 – HBA = 3.869, PosIon-2 – HBA = 4.300 Å" and (B) constraint angles "H – PosIon-1 – PosIon-2 = 15.24, H – PosIon-1 – HBA = 47.33, PosIon-2 – H – PosIon-1 = 37.11 °" of the generated 3D-pharmacophore for the synthesized bio-active spiro-compounds 30-63 against HeLa (cervical carcinoma) cell line which contains two positive ionizables (PosIon-1, PosIon-2; red), one hydrophobic (H; light blue) and one hydrogen bonding acceptor (HBA; green).

Figure S117. 3D-pharmacophore mapped on the synthesized bio-active spiro-compounds **30-63** against HeLa (cervical carcinoma) cell line.