Supporting Information

Synthesis of 2-hydroxymalonic acid derivatives via tandem oxidation and rearrangement by singlet oxygen

Akifumi Okada,^a Yoshitomo Nagasawa,^a Tomoaki Yamaguchi,^a Eiji Yamaguchi,^a Norihiro Tada,^a Tsuyoshi Miura^b and Akichika Itoh^{*a}

Gifu Pharmaceutical University 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan, ^{*a*} *and Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan* ^{*b*}

itoha@gifu-pu.ac.jp

1.	General Information	S-2
2.	Materials	S-3
3.	General Experimental Procedure	S-3
4.	Synthesis of Methyl 3-n-butyl-2-hydroxy-3-oxopropanoate	S-3
5.	Characterization of the products	S-3
6.	References	S-6

Appendix: ¹H, ¹³C NMR

1. General Information

All dry solvents were obtained from Kanto Kagaku Co., Ltd. Other chemicals used were of reagent grade and were obtained from Aldrich Chemical Co., Tokyo Kasei Kogyo Co., Ltd. and Wako Pure Chemical Industries, Ltd. ¹H NMR and ¹³C NMR spectra were obtained on a JEOL ECA 500 spectrometer (500 MHz for ¹H NMR and 125 MHz for ¹³C NMR) or JEOL AL 400 spectrometer (400 MHz for ¹H NMR and 100 MHz for ¹³C NMR) at room temperature in CDCl₃ as a solvent. Chemical shifts (δ) are reported in parts per million (ppm) downfield from internal Me₄Si. High-resolution mass spectra (HRMS) were obtained on a JEOL JMS-T100TD and are reported as m/z (M+Na+, relative intensity). Thin-layer chromatography (TLC) was carried out on precoated plates of silica gel (MERCK, silica gel F-254, 0.5 mm). Flash column chromatography was preformed with Kanto silica gel 60N (Spherical, Neutral, 40-50 mm) and Biotage Isolera® automated chromatography system using normal phase cartridges with YMC*GEL SIL (YMC Co., Ltd., 25 µm). IR spectra were recorded on a Perkin Elmer Spectrum 100 FTIR spectrometer and are reported in terms of frequency of absorption (cm⁻¹). Irradiation of visible light was performed with a 22 W fluorescent lamp (daylight color lamp, EFR25ED 22W from Panasonic Co., Ltd. as shown detailed in the bellow (Figure S-1 and Figure S-2)).

Figure S-1. The appearance of the fluorescent lamps

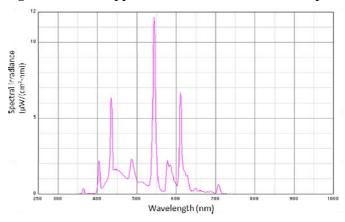


Figure S-2. The wavelength of the fluorescent lamp

2. Materials

Methyl 3-(4-nitrophenyl)-3-oxopropanoate (1e) were prepared from ethyl 3-(4-nitrophenyl)-3-oxopropanoate according to the literature.¹ 1j was prepared from amine according to the literature.²

3. General Experimental Procedure

A dry methanol solution (5 mL) of **1a** (0.3 mmol), methylene blue (2.0 mol%) and Ca(OH)₂ (0.1 equiv) in a Pyrex test tube (diameter: 15mm, height: 145mm) equipped with an O₂ balloon, was irradiated with stirring condition for 10 h with four 22 W fluorescent lamps, which was set from the test tube in the distance of 80 mm. The crude product was analyzed by ¹H NMR with 1,1,2,2-tetrachloroethane as the internal standard for determination of the NMR yields. The reaction mixture was concentrated under the reduced pressure. The pure product **2a** was obtained in 80% yield (49.0 mg) after column chromatography.

4. Synthesis of Methyl 3-n-butyl-2-hydroxy-3-oxopropanoate (3a)

A dry methanol solution (5 mL) of **1a** (0.3 mmol), methylene blue (2.0 mol%), $Ca(OH)_2$ (0.1 equiv) and P(OEt)₃ (1.0 equiv) in a Pyrex test tube equipped with an O₂ balloon, was irradiated with stirring condition for 10 h with four 22 W fluorescent lamps, which was set from the test tube in the distance of 80 mm. The reaction mixture was concentrated under the reduced pressure. This reaction performed three times. methyl was then 3-n-butyl-3,3-dimethoxy-2-hydroxypropanoate was obtained (total 30.6 mg) after column chromatography. A chloroform solution (3 mL) of this product and TFA (0.1 equiv) in flask was stirred for 10 minutes at 0 °C. The reaction mixture was concentrated under the reduced pressure. **3a** was obtained in 4% yield (6.7 mg) after column chromatography.

5. Spectral Data of Compounds

Dimethyl 2-butyl-2-hydroxymalonate (2a)³

¹H NMR (400 MHz, CDCl₃) δ 3.81 (s, 6H), 3.82 (s, 1H), 2.05-2.01 (m, 2H), 1.35-1.25 (m, 4H), 0.90 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 79.0, 53.3, 34.6, 25.2, 22.5, 13.8. R_f = 0.20 (hexane:ether = 3:1). Yield: 80% (49.0 mg)

Dimethyl 2-ethyl-2-hydroxymalonate (2b)⁴

¹H NMR (400 MHz, CDCl₃) δ 3.82 (s, 6H), 2.07 (q, J = 7.5 Hz, 2H), 0.91 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 79.4, 53.3, 28.1, 7.4. HRMS: m/z (DART) calcd for C₇H₁₃O₅ [M+H]⁺: 177,0763 found 177.0770. IR (ATR): 3941, 2959, 1735, 1438, 1225, 1156, 1119, 1089, 1006, 803 (cm⁻¹). R_f = 0.20 (hexane:ether = 3:1). Yield: 60% (31.8 mg)

Dimethyl 2-hydroxy-2-propylmalonate (2c)

¹H NMR (400 MHz, CDCl₃) δ 3.81 (s, 6H), 3.73 (s, 1H), 2.03-1.99 (m, 2H), 1.36-1.30 (m, 2H), 0.94 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 79.0, 53.3, 36.9, 16.5, 13.9. HRMS: *m*/*z* (DART) calcd for C₈H₁₅O₅ [M+H]⁺: 191.0919, found 191.0913. IR (ATR): 3505, 2980, 2960, 1738, 1723, 1428, 1294, 1249, 1215, 1117, 935, 806, 599 (cm⁻¹). R_f = 0.20 (hexane:ether = 3:1). Yield: 79% (45.2 mg)

Dimethyl 2-hydroxy-2-isopropylmalonate (2d)³

¹H NMR (400 MHz, CDCl₃) δ 3.82 (s, 6H), 3.66 (s, 1H), 2.65 (sep, *J* = 6.8 Hz, 1H), 0.92 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 82.3, 53.3, 33.4, 16.4. R_f = 0.20 (hexane:ether = 3:1). Yield: 82% (47.0 mg)

Dimethyl 2-hydroxy-2-(4-nitrophenyl)malonate (2e)³

¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 9.2 Hz, 2H), 7.89 (d, *J* = 9.2 Hz, 2H), 4.50 (s, 1H), 3.88 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 148.0, 142.1, 128.0, 123.0, 79.6, 54.2. R_f = 0.30 (hexane:ethyl acetate = 3:2). Yield: 74% (60.1 mg)

Dimethyl 2-hydroxy-2-(pylydine-3-yl)malonate (2f)³

¹H NMR (400 MHz, CDCl₃) δ 8.91 (s, 1H), 8.56 (d, *J* = 4.5, 1H), 8.00 (dt, *J* = 8.3, 1.9 Hz, 1H), 7.30 (dd, *J* = 8.3, 4.8 Hz, 1H), 3.82 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 149.4, 148.2, 134.7,132.0, 122.9, 78.8, 54.0. R_f = 0.32 (hexane:ethyl acetate = 1:3). Yield: 34% (25.9 mg)

Methyl 2-hydroxy-2-methyl-3-(dimethylamino)-3-oxopropanoate (2g)

¹H NMR (500 MHz, CDCl₃) δ 4.86 (s, 1H), 3.81 (s, 3H), 3.03 (s,3H), 2.96 (s, 3H), 1.63 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.2, 170.2, 75.1, 53.0, 37.2, 22.9. HRMS: *m*/*z* (DART) calcd for C₇H₁₄NO₄ [M+H]⁺: 176.0922, found 176.0919. IR (ATR): 3512, 2925, 1740, 1636, 1396, 1257, 1157, 1088, 970 (cm⁻¹). R_f = 0.50 (hexane:ethyl acetate = 2:1). Yield: 59% (31.2 mg)

Methyl 2-hydroxy-2-methyl-3-(diethylamino)-3-oxopropanoate (2h)

¹H NMR (400 MHz, CDCl₃) δ 4.97 (s, 1H), 3.72 (s, 3H) 3.36-3.32 (m, 2H), 3.21-3.15 (m, 2H), 1.54 (s, 3H), 1.09-1.05 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 169.5, 75.1, 52.8, 41.4, 41.0, 23.0, 13.3, 12.1. HRMS: m/z (DART) calcd for C₉H₁₈NO₄ [M+H]⁺: 204.1235, found 204.1229. IR (ATR): 3348, 2938, 1740, 1630, 1251, 1118, 980, 795 (cm⁻¹). R_f = 0.50 (hexane:ethyl acetate = 1:1). Yield: 72% (44.0 mg)

Methyl 2-hydroxy-2-methyl-3-(4-morpholinyl)-3-oxopropanoate (2i)

¹H NMR (500 MHz, CDCl₃) δ 4.60 (s, 1H), 3.81 (s, 3H), 3.75-3.45 (m, 8H), 1.63 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.6, 168.7, 75.5, 66.6, 66.2, 53.1, 46.3, 43.7, 23.4. HRMS: *m*/*z* (DART) calcd for C₉H₁₆NO₅ [M+H]⁺: 218.1028, found 218.1028. IR (ATR): 3461, 3284, 2970, 1741, 1637, 1432, 1266, 1235, 1109, 1031, 969, 835 (cm⁻¹). R_f = 0.50 (hexane:ethyl acetate = 1:2). Yield: 68% (44.2 mg)

Methyl 2-hydroxy-2-methyl-3-(1-indolinyl)-3-oxopropanoate (2j)

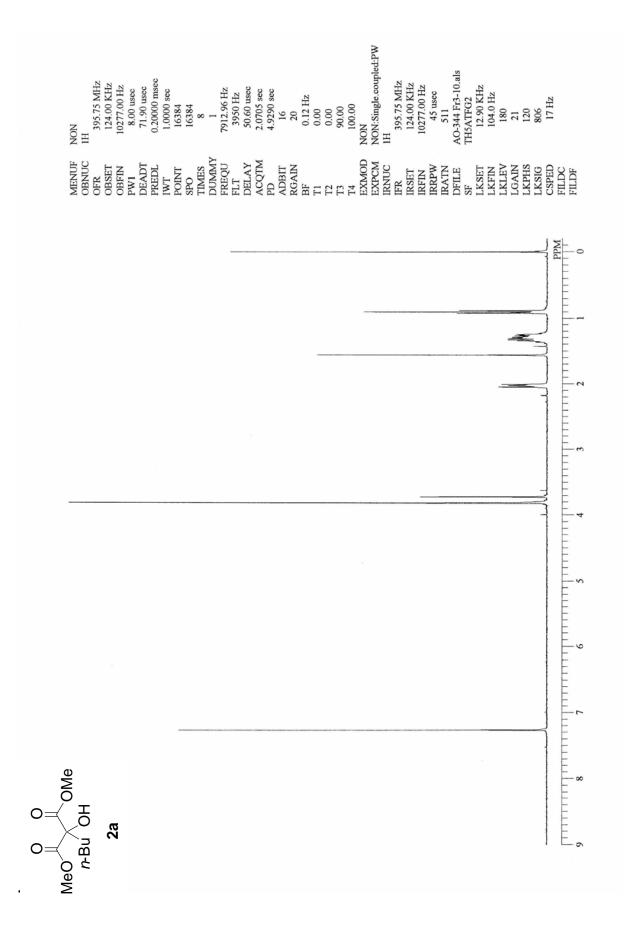
¹H NMR (500 MHz, CDCl₃) δ 8.22 (d, *J* = 8.1 Hz, 1H), 7.25-7.19 (m, 2H), 7.09-7.06 (t, *J* =7.5 Hz, 1H), 4.55 (s, 1H), 4.14 (dd, *J* =10.9, 8.0, 1H), 3.97-3.92 (m, 1H), 3.81 (s, 3H), 3.12 (t, *J* = 8.0 Hz, 2H), 1.73 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.6, 167.6, 143.1, 131.2, 127.5, 124.7, 124.5, 117.9, 53.3, 47.9, 28.6, 23.1. HRMS: *m*/*z* (DART) calcd for C₁₃H₁₆NO₄ [M+H]⁺: 250.1079, found 250.1069. IR (ATR): 3383, 3013, 1747, 1640, 1480, 1410, 1162, 1080, 750 (cm⁻¹). R_f = 0.46 (hexane:ethyl acetate = 2:1). Yield: 75% (65.0 mg)

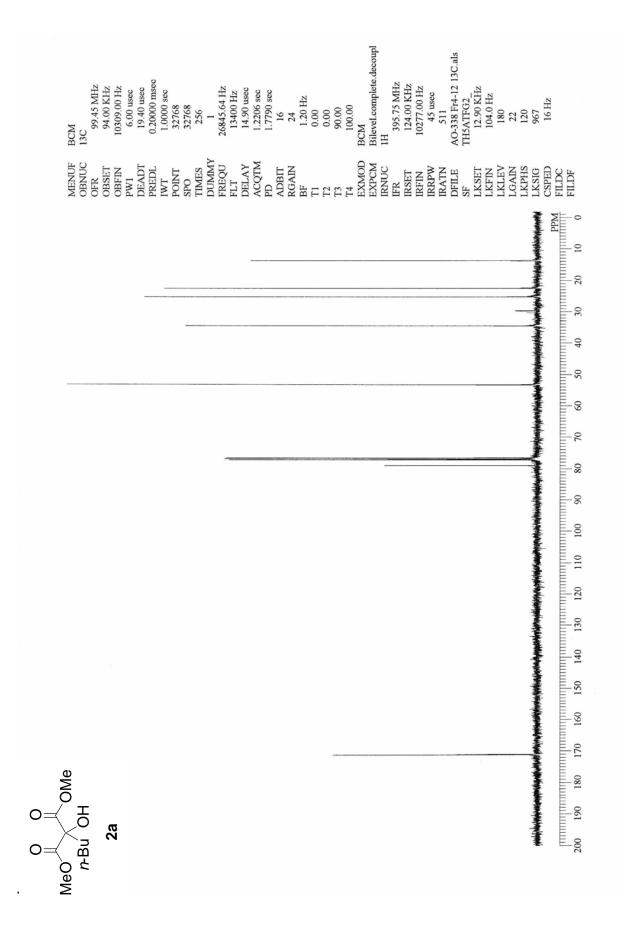
Methyl 3-n-butyl-2-hydroxy-3-oxopropanoate (3a)

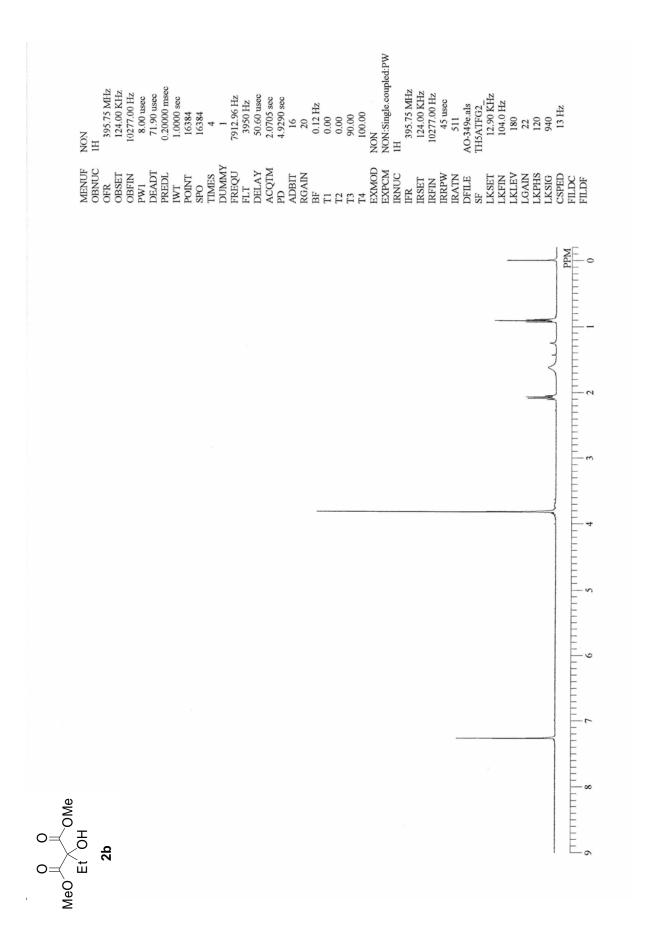
¹H NMR (400 MHz, CDCl₃) δ 4.80 (s, 1H), 3.83 (s, 1H), 2.77-2.56 (m, 2H), 1.66-1.56 (m, 2H), 1.38-1.25 (m, 2H), 0.91 (t, *J* = 2.4 Hz, 3H).

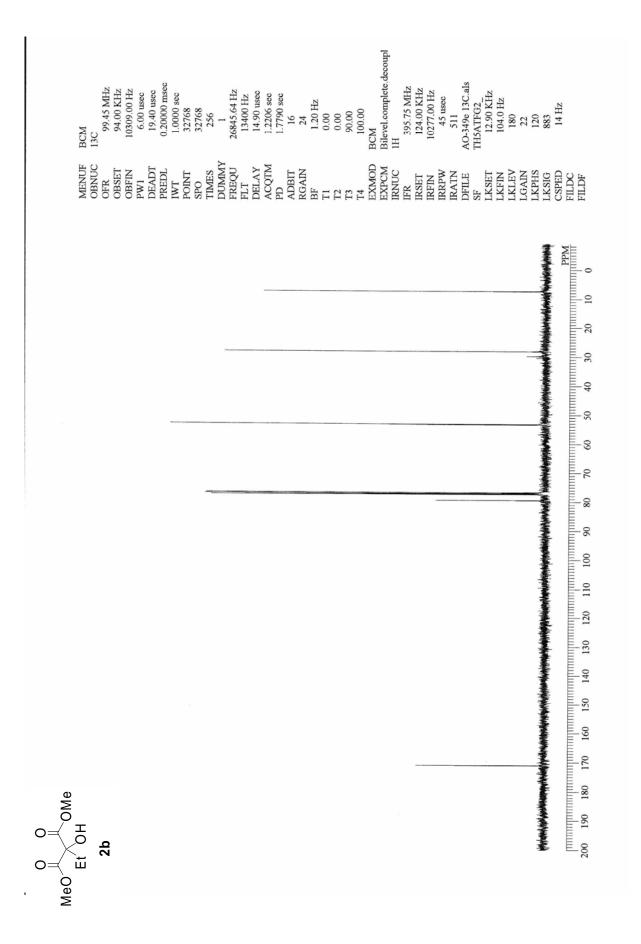
¹³C NMR (125 MHz, CDCl₃) δ 204.4, 168.8, 77.6, 53.1, 38.3, 25.4, 22.1, 13.7.

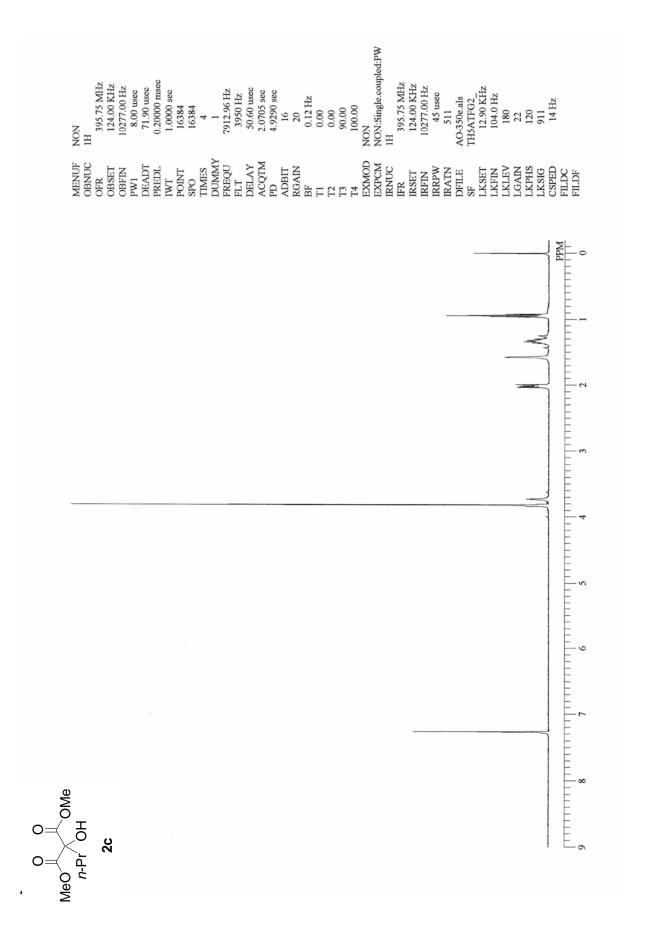
HRMS: m/z (DART) calcd for C₈H₁₅O₄ [M+H]⁺: 175.0970, found 175.0972.

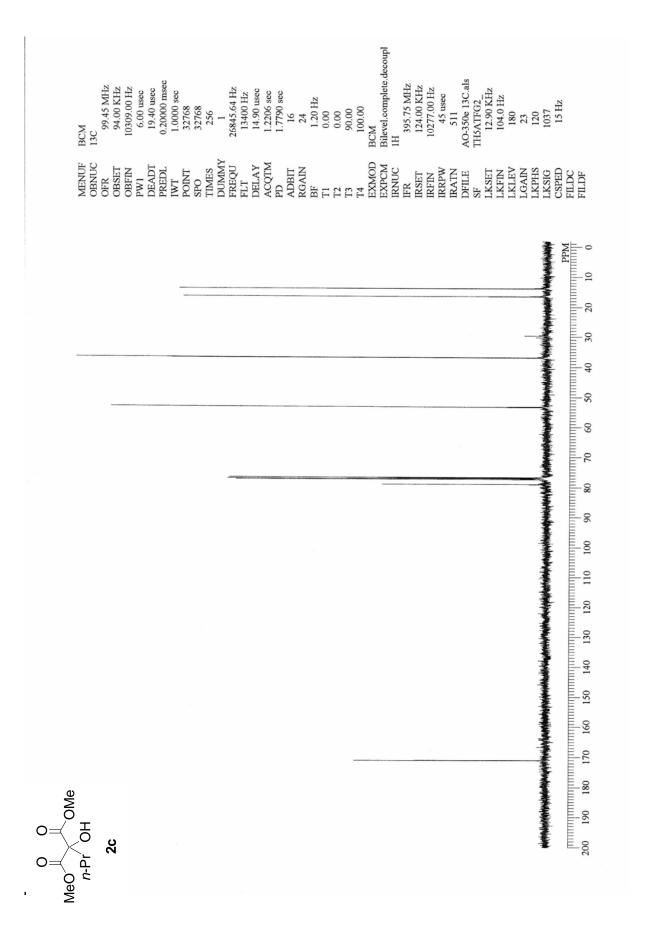

IR (ATR): 3441, 2960, 2875, 1727, 1439, 1210, 1170, 1123, 972 (cm⁻¹)

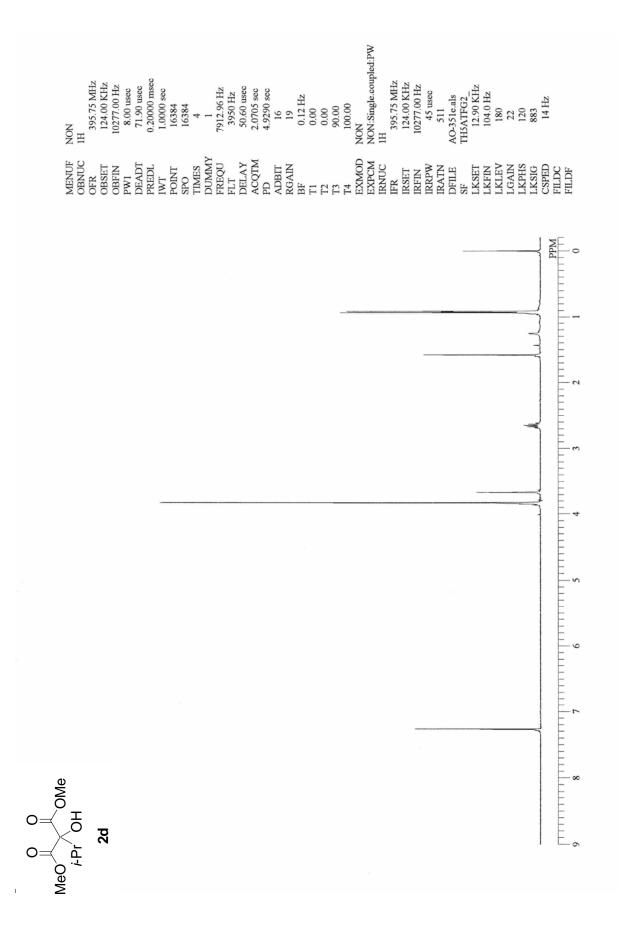

 $R_{\rm f}$ = 0.40 (hexane:ethyl acetate = 3:1).

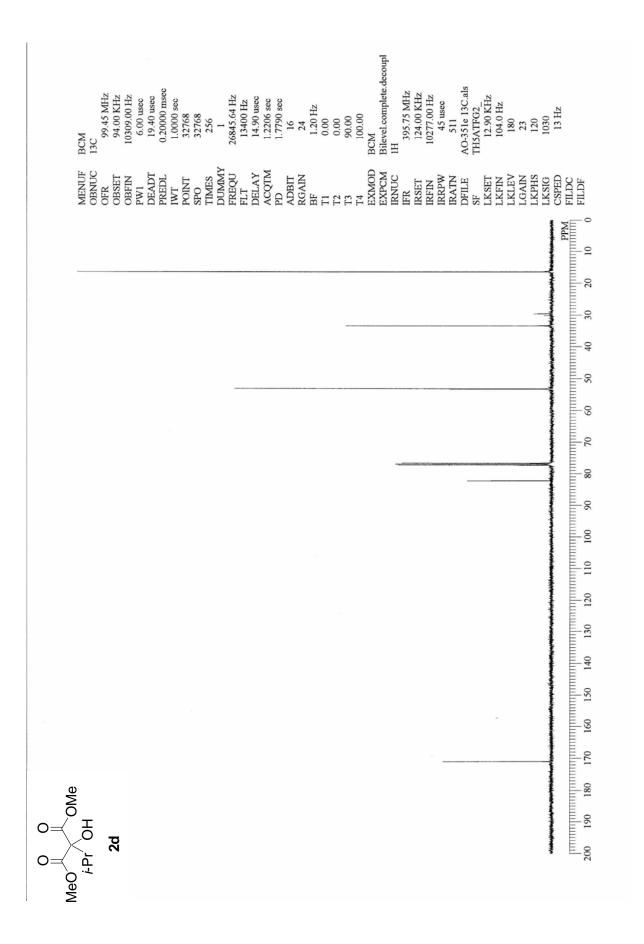

Yield: 4% (6.7 mg)

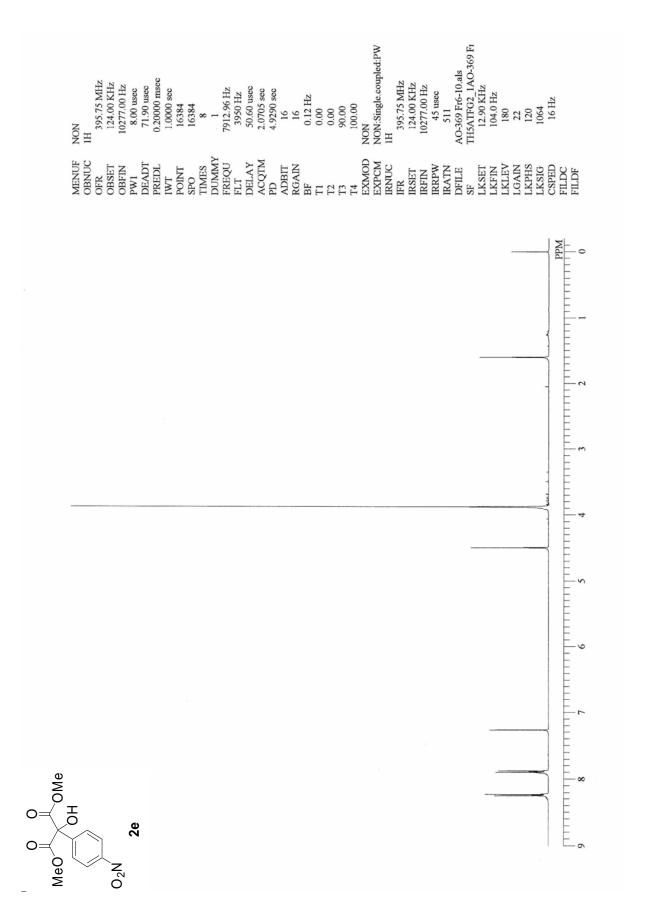

6. References

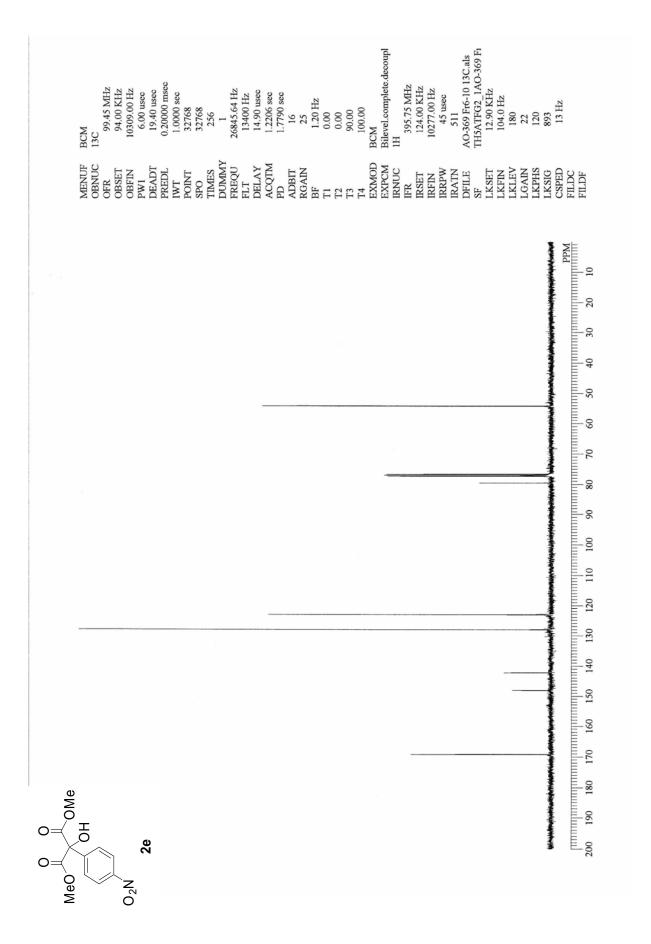

- (1) Rappoprot, Z.; Gazit, A. J. Org. Chem. 1986, 51, 4112.
- (2) Hengzhen, Q.; Zhanhui, Y.; Jiaxi, X. Synthesis 2011, 5, 723.
- (3) Kanai, N.; Nakayama, H.; Tada, N.; Itoh, A. Org. Lett. 2010, 12, 1948.
- (4) Ciufolini, M.; Rohrschange, F. WO1998004557 A1 19980205.
- (5) Chuang, G.-J.; Wang, W.; Lee, E.; Ritter, T. J. Am. Chem. Soc. 2011, 133, 1760.

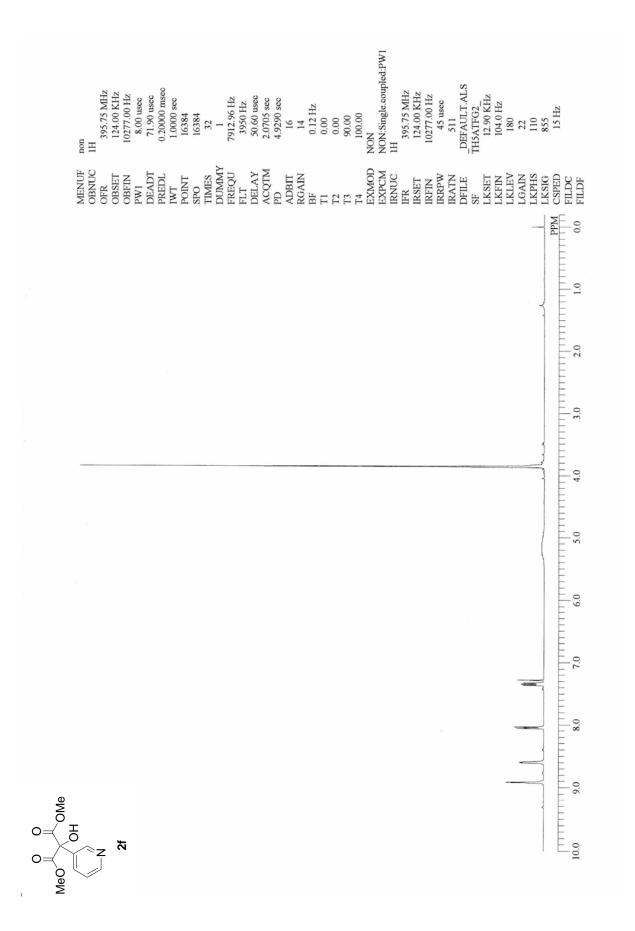


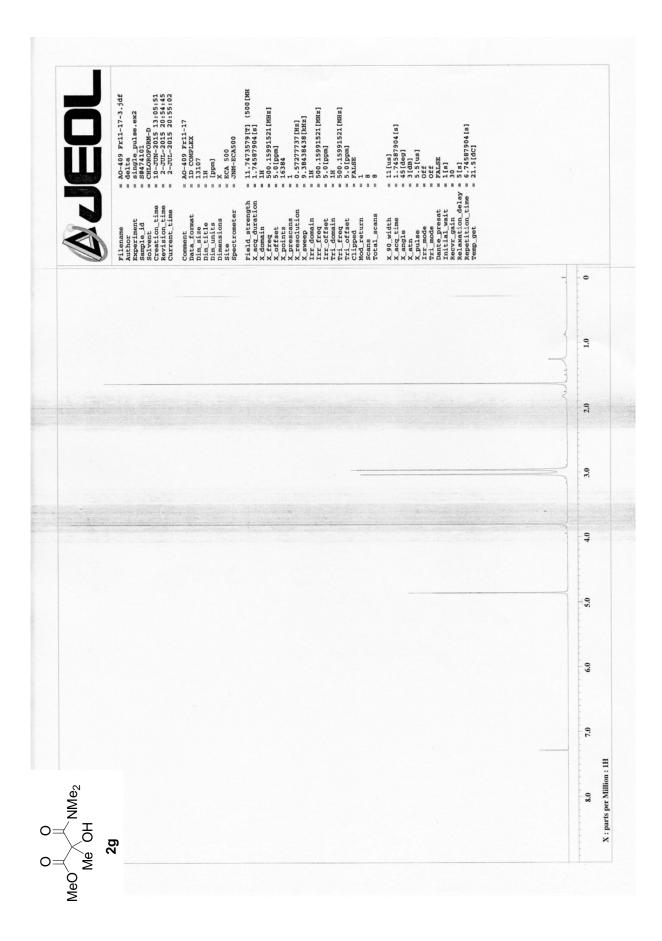


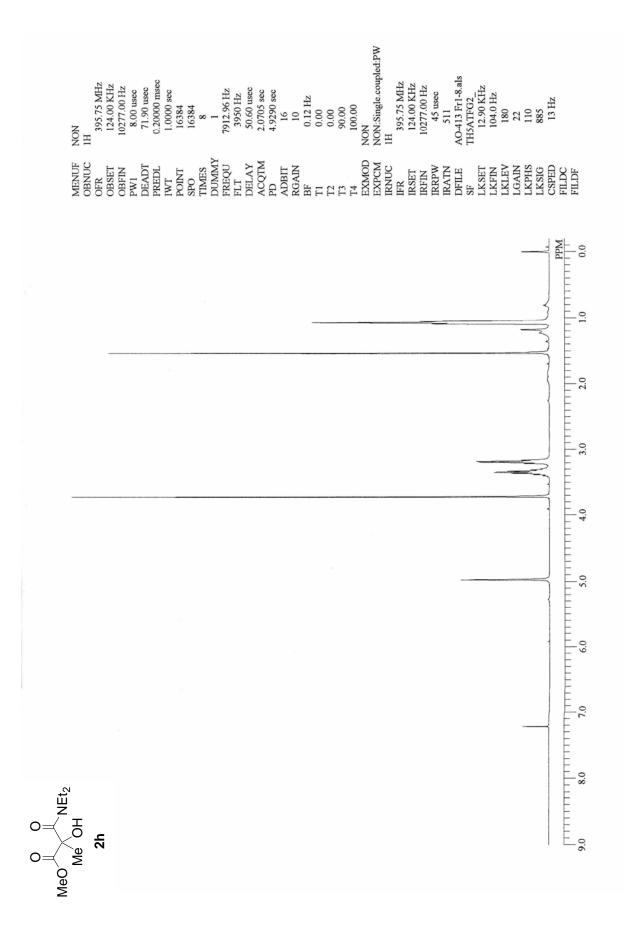


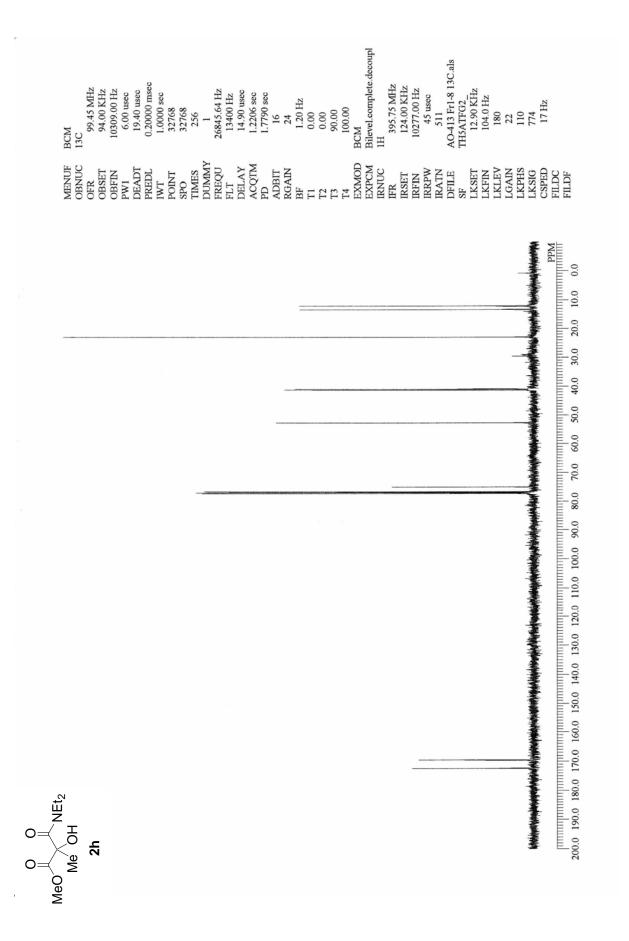


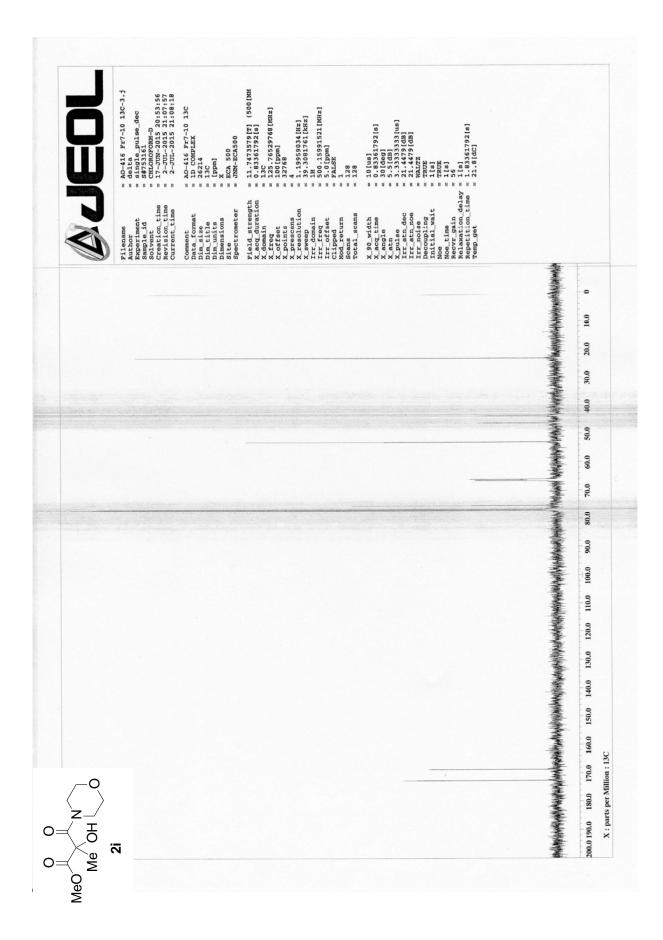


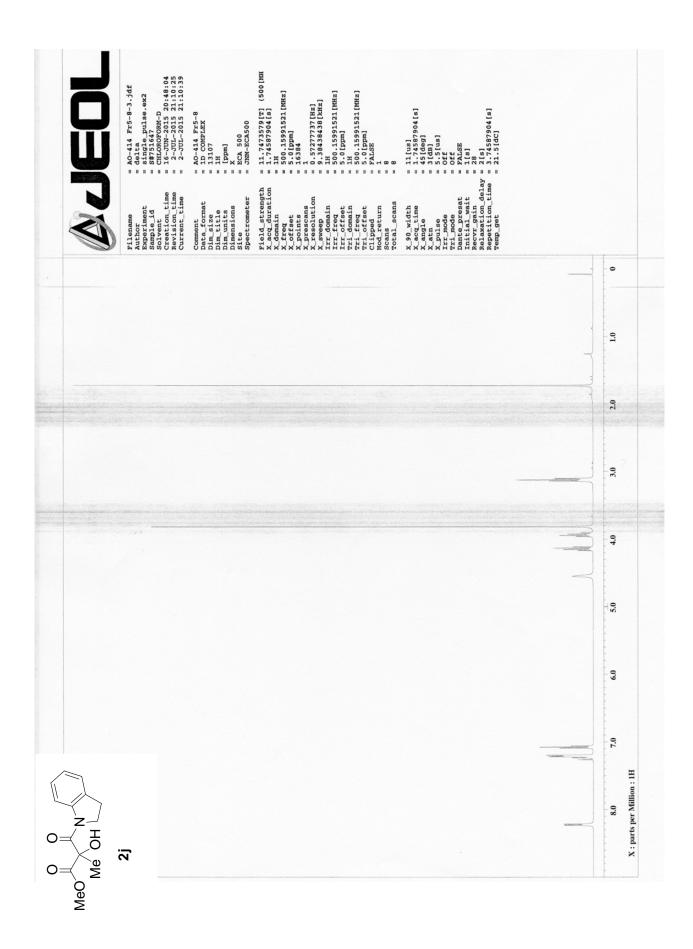


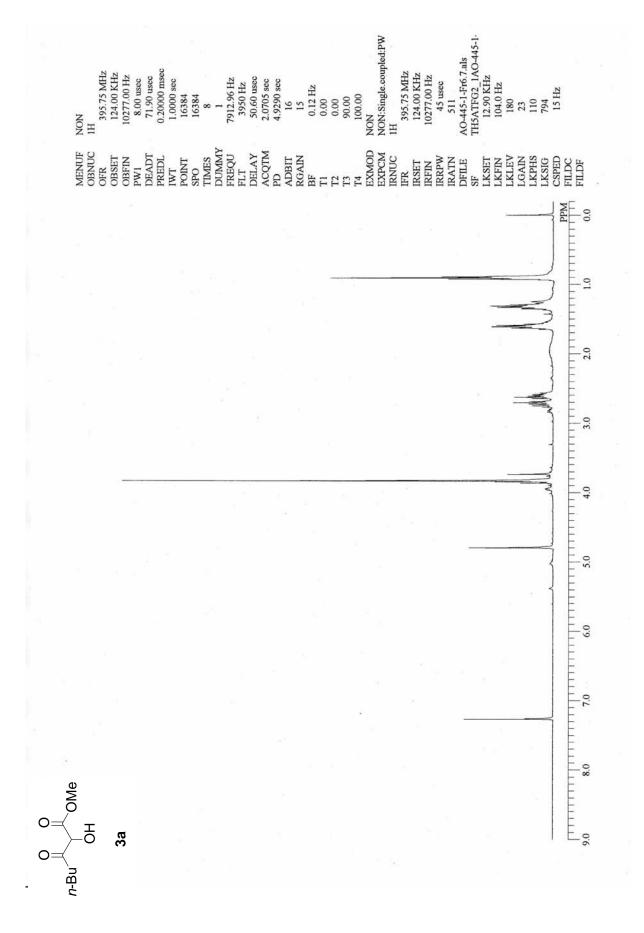









<pre>= AO-409 fr11-17 13C-3. = delta = sht01e_puise_dec = s#47558 = CHLOROFORK-D = 2-UUL-2015 21:02:00 = 2-UUL-2015 21:02:04</pre>	= A0-409 fr11-17 13C = 1D CONFLEX = 26214 = 13C = [Dpm] = ECA 500 = JNM-ECA500		500.15991521 [MHz] 50.0150m] 7AASE 128 128 128 128 10(us] 0.835192[s]	 5.5 (ab) 5.5 (ab) 5.2 (32) 5.4.79 (4B) 21.4.79 (4B) MALTZ TRUE TRUE TRUE TRUE 	= 56 2 = 21 2 = 21 3 = 21 3 = 21.7[dC] 5 = 21.7[dC]		
Filename Author Experiment Sample_id Solvent_ime Revision_time Revision_time Current_time	Comment Data_format Dim_size Dim_citle Dim_units Dim_units Site Spectrometer	Field_strength X_acc_duration X_freq X_freq X_points X_points X_resolution X_resolution X_resolution	Irr_freq Irr_offset Clipped Mod_return Scans Total_scans X_go_witch X_acq_time	X_angle X_angle X_an.dec Irr_atn_dec Irr_atn_oe Irr_noise Irr_noise Irr_ial_wait Nos	Noe_time Recvr_gain Relaxation_delay Repetition_time Temp_get	4	
							10.0 0
						Arms and being being strict	40.0 30.0 20.0
			-			and south and a second second	60.0 50.0
						nantation interest	90.0 80.0 70.0
							110.0 100.0 90
						in the state of the set of the set	130.0 120.0
							160.0 150.0 140.0
						understand a strategy in the second	180.0 170.0 16
						Algert Strands	200.0 190.0



JEDL	PROCESSING PARAMETERS Combalance 10 : PARAMETERS sexp: 2.0[Hz] : 0.0[s] sexp: 2.0[Hz] : 0.0[s] tropescill : 1 zerosill : 1 fft : 1 : TRUE machinephase ppm	Derived from: A0-414 fr5-8 13C-1.jdf	AO-414 fr5-8 13C-3.jd edita 15-8 13C-3.jd edita 25-978 edita 25-978 edita 2-0015 20:5:36 i 2-001-2015 20:13:20 2-001-2015 20:13:20	= A0-414 Fr5-8 13C = 10 CORPLEX = 26314 = 13C = [2pm] = K2M 5000 = 333-500			= 10[us] = 0.3351792[s] = 0.1660 = 5.533331(us] = 21.4479[dB] = 21.4479[dB] = 21.4479[dB] = 21.4479[dB] = 21.4479[dB]		Lme = 1.83361792[s] = 21.8[dC]
Q	PROCESS3 dc_balance : sexp : 2.0[H: trapezoid 3 : tft : 1 : Tl fft : 1 : Ta machinephase ppm	Derived from:	Filename Author Experiment Sample_id Solvent Creation_time Revision_time Current_time	Comment Data_format Dim_size Dim_title Dim_units Dimensions Site Spectrometer	Field_strength X_acq_duration X_domain X_freq X_offset X_points X_prescans	X_resolution x_sweep Irr_domain Irr_offset Clipped Mod_return Scans Total_scans	X_90_width X_acq_time X_atn X_atn X_pulse X_pulse Irr_atn_noe Irr_atn_noe Irr_noise Decoupling		Repetition_ti Temp_get
								transmission and part constructions in a present and the second of the construction of a prior in a product of the prior o	0
								August and a state of the state	10.0
-								Hartweet	30.0 20.0
								advertision of	40.0 30
						ingen der se		Wardon work	50.0
								ALANSA A	60.0
								Wardshine IN	0 70.0
								Contraction of the local division of the loc	90.0 80.0
								No. of Street, or other	100.0
								中小学家の日本	110.0
									0 120.0
								Statistics and	0.0 130.0
								AN PROPERTY	150.0 140.0
~								ur sterset in sterset i sterset i strong verset som at a post of the operation of the far is set	
								Statistics of the	200.0 190.0 180.0 170.0 160.0
								at we have	0 180.0
Me OH	2]							California de la calegaria	0.0 190.0

