Supporting information

Facile synthesis of highly porous N-doped CNTs/Fe₃C and its electrochemical

properties

Yanzhong Wang^a*, Guoxiang Zhang^a, Guiwu Liu^b, Wei Liu^a, Huiyu Chen^a*,

JinlongYang^{a,c}

^aSchool of Materials Science and Engineering, North University of China, Taiyuan

030051, P.R. China

^bSchool of Materials Science and Engineering, Jiangsu University, Zhenjiang 030051,

P.R. China

°State Key Lab of New Ceramics and Fine Processing, Department of Materials

Science and Engineering, Tsinghua University, Beijing 100084, P.R. China

Corresponence author: Yanzhong Wang Tel/ Fax: +86-351-3557519. E-mail:

wyzletter@nuc.edu.cn; Huiyu Chen E-mail: hychen09@sina.com

Fig.s1 XRD pattern of CNT/Fe₃C-6 without HCl treatment

Fig.s2 SEM images of (a) CNT/Fe₃C-2, (b) CNT/Fe₃C-4, (c) CNT/Fe₃C-6

Fig. s3. Nitrogen adsorption–desorption isotherms and specific surface area of N-doped CNTs/Fe₃C

Fig.s4 (a) CV curves at 100 mV s⁻¹, and (b) GCP curves of N-doped CNTs/Fe₃C at a current density of 1A g^{-1}