Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

for

Cation Templated Improved Synthesis of Pillar[6]arenes

Marta Da Pian,^a Ottorino De Lucchi^a, Giorgio Strukul,^a Fabrizio Fabris^{a,*} Alessandro Scarso^{a,*}

a) Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca'Foscari di Venezia, Via Torino 155,

30172, Mestre Venezia (ITALY)

alesca@unive.it; fabrisfa@unive.it

Contents:

Materials and method	S2
Synthesis of Dialkoxypillar[5]arenes and Dialkoxypillar[6]arenes	S2
¹ H NMR Spectra of Host-Guest Interaction of $P_2[5]$ with T_2 , T_3 , T_4	S15
¹ H NMR Spectra of Host-Guest Interaction of $P_2[6]$ with T_2 , T_3 , T_4	S16
ESI-MS Spectra of Host-Guest complex of $P_2[5]$ with T_4	S18
ESI-MS Spectra of Host-Guest complex of $P_2[6]$ with $T_{2,}T_3$	S18
Determination of the Kass between P2[6] and T2	S19
Semiempirical PM3 calculations on T2@P2[5] and T2@P2[6]	S20

1. Materials and Method

Solvents used in the study were reagent grade and purchased from commercial national sources. iodide, methyl iodide, butylbromide, paraformaldehyde, Hydroguinone, ethyl FeCl₃, tetramethylammoniumchloride, bis(cyclopentadienyl)Cobalt (III) hexafluorophosphate were reagent grade and purchased from Sigma-Aldrich. Deionized water was used in all experiments. ¹H and ¹³C NMR spectra were collected on a Bruker-300 MHz NMR spectrometer. Low resolution electrospray ionization mass spectrometry LRMS (ESI-MS) experiments were carried out in positive mode with Agilent **Technologies** LC/MSD Trap SL AGILENT instrument (mobile phase Acetonitrile). (Ferrocenylmethyl)trimethylammonium hexafluorophosphate was synthesized and characterized according to literature procedures.^{S1}

2. Synthesis of Dialkoxypillar[5]arene and Dialkoxypillar[6]arene

Scheme S1. Synthesis of dialkoxy-benzenes⁵² and the corresponding Pillar[n]arenes.

2.1 Synthesis of pillar[n]arenes in the presence of T₁ or T₄. A mixture of FeCl₃ (0,048 g , 0,3 mmol) (and T₁/T₄ in a 1:2 molar ratio was heated at 100 °C with gentle stirring until a dark brown liquid was obtained. A solution of 1,4-dialkoxybenzene (0,166 g, 1 mmol), paraformaldehyde (0,091 g, 3 mmol) in dichloromethane (20 ml) was added to the mixture. After stirring at room temperature for 4h, the reaction was quenched by addition of water. The organic phase was separated and washed with saturated aqueous NaHCO₃, water and brine. The crude product was purified by column chromatography (eluant: Cyclohexane (Cy)/dichloromethane (DCM) in gradient from 3:7 to 1:9). R_f of P[5] = 0.4 in 3:7 Cy/DCM; R_f of P[6] = 0.4 in 1:9 Cy/DCM.

2.2 Synthesis of pillar[n]arenes in the presence of T₂ or T₃. A mixture of FeCl₃ (50.3 mg, 0.3 mmol), T₂/T₃ (0.04 mmol), 1,4-dialkoxybenzene (1 mmol), paraformaldehyde (90 mg, 3 mmol) in dichloromethane (20 ml) was prepared. After stirring at room temperature for 4h, the reaction was quenched by addition of water. The organic phase was separated and washed with saturated aqueous NaHCO₃, water and brine. The crude product was purified by column chromatography (eluant: Cy/DCM in gradient from 3:7 to 1:9). R_f of P[5] = 0.4 in 3:7 Cy/DCM; R_f of P[6] = 0.4 in 1:9 Cy/DCM.

2.3 Characterization of Pillar[n]arenes

2.3.1 P₁[5].

¹H NMR (300 MHz, CDCl₃, 25 °C) δ (ppm): 6.75 (s, 10H), 3.77 (s, 10H), 3.73 (s, 30H). ¹³C NMR (300 MHz, CDCl₃, 25 °C) δ (ppm):. 150.66, 128.21, 113.90, 55.70, 29.51. MS (ESI): m/z 750,6 [M], 773.5 [M+Na⁺], 789.5 [M+K⁺], 824.6 [M+(CH₃)₄N⁺].

Figure S2. ¹H NMR spectrum of P₁[5]

2.3.2 P₁[6]

¹H NMR (300 MHz, CDCl3, 25 °C) δ (ppm): 6.69 (s, 12H), 3.69 (s, 12H), 3.64 (s, 36H). ¹³C NMR (300 MHz, CDCl₃, 25 °C) δ (ppm): 151.40, 127.43, 113.59, 56.09, 29.67. MS (ESI): m/z 901,6 [M+H⁺], 918.1 [M+NH₄⁺].

Figure S7. MS (ESI) spectrum of P₁[6]

2.3.3 P₂[5].

¹H NMR (300 MHz, CDCl3, 25 °C) δ (ppm): 6.72 (s, 10H), 3.81 (q, J = 6Hz, 10H), 3.77 (s, 10), 1.25 (t, J = 6 Hz, 30H). ¹³C NMR (300 MHz, CDCl₃, 25 °C) δ (ppm): 149.81, 128.48, 115.07, 63.74, 29.83, 15.03. MS (ESI): m/z 891.7 [M+H⁺], 908.6 [M⁺+ NH₄⁺], 929.7.6 [M⁺+ K⁺], 964.7 [M⁺+ N(CH₃)₄⁺]

Figure S8. ¹H NMR spectrum of P₂[5]

Figure S9. ¹³C NMR spectrum of P₂[5]

Figure S10. MS (ESI) spectrum of $P_2[5]$

2.3.4 P₂[6]

¹H NMR (300 MHz, CDCl3, 25 °C) δ (ppm): 6.69 (s, 12H), 3.80 (q, J = 6Hz, 12H), 3.79 (s, 12H), 1.28 (t, J = 6 Hz, 36H). ¹³C NMR (300 MHz, CDCl₃, 25 °C) δ (ppm): 150.35, 127.78, 115.16, 63.93, 30.86, 15.11. MS (ESI): m/z 1068.9 [M+], 1091.9 [M+Na⁺], 1107.9 [M+K⁺], 1170.9 [M+T₁].

Figure S11. ¹H NMR spectrum of P₂[6]

Figure S13. MS (ESI) spectrum of P₂[6]

2.3.5 P₃[5].

¹H NMR (300 MHz, CDCl3, 25 °C) δ (ppm): 6.92 (s, 10H), 3.93 (t, J = 6Hz, 20H), 3.82 (s, 10H), 1.86 (q, J = 6Hz, 20H), 1.59 (s, J = 6Hz, 20H), 1.05 (t, 30H). ¹³C NMR (300 MHz, CDCl₃, 25 °C) δ (ppm): 149.74, 128.15, 114.64, 67.90, 32.03, 29.33, 19.51, 14.02. MS (ESI): m/z 1171.1[M+H⁺], 1189.2 [M+NH₄⁺], 1210.1 [M+K⁺].

Figure S14. ¹H NMR spectrum of P₃[5]

Figure S15. ¹³C NMR spectrum of P₃[5]

Figure S16. MS (ESI) spectrum of $P_3[5]$

2.3.6 P₃[6]

¹H NMR (300 MHz, CDCl3, 25 °C) δ (ppm): 6.69 (s, 12H), 3.76 (t, J = 6Hz, 24H), 3.76 (s, 12H), 1.69 (q, J = 6Hz, 24H), 1.42 (s, J = 6Hz, 24H), 0.91 (t, 36H). ¹³C NMR (300 MHz, CDCl₃, 25 °C) δ (ppm): 150.41, 127.80, 114.93, 68.17, 31.87, 30.70, 19.39, 13.90. MS (ESI): m/z 1423.4[M+NH₄⁺], 1477.3 [M+N(CH₃)₄⁺].

Figure S17. ¹H NMR spectrum of P₃[6]

3. ¹H NMR Spectra of Host-Guest Interaction of $P_2[5]$ with T_2 , T_3 , T_4

Figure S20. ¹H NMR spectrum of host-guest interaction of $P_2[5]$ with T_2

Figure S21. ¹H NMR spectrum of host-guest interaction of $P_2[5]$ with T_3

Figure S22. ¹H NMR spectrum of host-guest interaction of P₂[5] with T₄

4. ¹H NMR Spectra of Host-Guest Interaction of $P_2[6]$ with T_2 , T_3 , T_4

Figure S23. ¹H NMR spectrum of host-guest interaction of $P_2[6]$ with T_2

Figure S24. ¹H NMR spectrum of host-guest interaction of P₂[6] with T₃

Figure S25. ¹H NMR spectrum of host-guest interaction of P₂[6] with T₄

5. ESI-MS Spectra of Host-Guest complex of P₂[5] with T₄

Figure S26. MS (ESI) spectrum of P₂[5] + T₄, m/z 1029.7.

6. ESI-MS Spectra of Host-Guest complex of $P_2[6]$ with $T_{2,}T_{3.}$

Figure S27. MS (ESI) spectrum of P₂[6] + T₂, m/z 1257.6.

Figure S28. MS (ESI) spectrum of P₂[6] + T₃, m/z 1326.9.

7. Determination of the Kass between P2[6] and T2

P2[6] was dissolved in CDCl₃ :ACN-d₃ 1:1 to obtain a 2 mM solution. **T2** was dissolved in CDCl₃ :ACN-d₃ 1:1 to obtain a 40 mM solution. 1 mL of **P2[6]** solution was poured into the NMR tube and the first spectrum recorded. **T2** solution was added in amounts from 5 μ L to 50 μ L each time, recording spectra after each addition, until the amount of guest present in solution was 5 times more than the host one.

Figure S29. Plot for the titration of $P_2[6]$ with T_2 and fitting of the data for the calculation of the K_{ass} (1.2·10⁴ M⁻¹).

8. Semiempirical PM3 model calculations on T2@P2[5] and P2@P2[6]

Molecular modelling (semi-empirical PM3 calculations) of $T2@P_2[5]$ and $T2@P_2[6]$ shows that can explain what observed experimentally. Indeed, the templating molecule T2 barely fits in the cavity of $P_2[5]$, and the analysis of the model displays that bumps (close inter-atomic contacts between atoms that are within 70% of the sum of the covalent radii) can only avoided by forcing cobaltocenium into a nearly eclipsed conformation, enhancing the overall energy of the structure itself. On the contrary, the larger cavity of $P_2[6]$ allows the more favoured staggered conformation of T2, without contacts with the inner walls of the cavity.

Figure S30. Minimized (semiempirical PM3) structure of **T2@P₂[5]** on top (left: front view; right: lateral view) and space filling structures bottom (front view).

Figure S31. Minimized (semiempirical PM3) structure of **T2@P₂[6]** on top (left: front view; right: lateral view) and space filling structures bottom (front view).

A plot of the calculated energies (semi-empirical PM3) of $P_2[5]$ and $P_2[6]$ with cobalt atom of T2 "frozen" at increasing distance from the centre of cavities is reported.

Figure S32. Plot of the relative energy for the **T2**@host systems as function of the distance between the centers of mass of the host and the guest **T2**.

The plot displays in both cases a gain of energy when the host enters both cavities (the energy level 0 was arbitrary set at 8 Å for both structures), and the **T2@P₂[6]** inclusion process results more exotermic.

References

S1. J.K. Lindsay, C.R. Hauser, J. Org. Chem., 1957, 22, 355.
S2. R.A.W. Johnston, M.E. Rose, *Tetrahedron* 1979, 35, 2169.