Supporting Informatin

A gadolinium MOF acting as a multi-responsive and highly selective luminescent sensor for detecting o-, m-, p-nitrophenol and Fe³⁺ ions in aqueous phase

Qing-Hua Tan, Yan-Qin Wang,* Xiao-Yu Guo, Hou-Ting Liu and Zhi-Liang Liu*

Tuble 51: The	selected bolia lenguis	and angles for compound 1	
Gd(1)-O(12)	2.292(8)	Gd(1)-O(5)A	2.312(8)
Gd(1)-O(3)	2.340(7)	Gd(1)-O(19)B	2.422(10)
Gd(1)-O(21)	2.436(10)	Gd(1)-O(7)C	2.435(9)
Gd(1)-O(8)C	2.476(8)	Gd(1)-O(20)B	2.472(7)
Gd(2)-O(10)	2.305(9)	Gd(2)-O(6)C	2.332(8)
Gd(2)-O(4)D	2.364(8)	Gd(2)-O(13)E	2.360(8)
Gd(2)-O(25)	2.436(7)	Gd(2)-O(17)	2.449(9)
Gd(2)-O(2)	2.491(8)	Gd(2)-O(18)	2.577(10)
Gd(2)-C(45)	2.861(15)	Gd(3)-O(14)E	2.268(9)
Gd(3)-O(9)	2.318(8)	Gd(3)-O(1)	2.330(8)
Gd(3)-O(24)	2.364(9)	Gd(3)-O(22)	2.429(12)
Gd(3)-O(15)F	2.398(9)	Gd(3)-O(23)	2.438(9)
Gd(3)-O(16)F	2.512(8)	Gd(3)-C(44)F	2.836(13)
O(4)-Gd(2)G	2.364(8)	O(5)-Gd(1)E	2.312(8)
O(6)-Gd(2)F	2.332(8)	O(7)-Gd(1)F	2.435(8)
O(8)-Gd(1)F	2.476(8)	O(13)-Gd(2)A	2.360(8)
O(14)-Gd(3)A	2.268(9)	O(15)-Gd(3)C	2.398(9)
O(16)-Gd(3)C	2.512(8)	O(19)-Gd(1)B	2.422(10)
O(20)-Gd(1)B	2.472(7)	O(12)-Gd(1)-O(5)A	94.2(3)
O(12)-Gd(1)-O(3)	79.1(3)	O(5)A-Gd(1)-O(3)	84.1(3)
O(12)-Gd(1)-O(19)B	157.7(3)	O(5)A-Gd(1)-O(19)B	86.1(3)
O(3)-Gd(1)-O(19)B	78.7(3)	O(12)-Gd(1)-O(21)	72.3(3)
O(5)A-Gd(1)-O(21)	77.2(4)	O(3)-Gd(1)-O(21)	144.3(3)
O(19)B-Gd(1)-O(21)	129.1(3)	O(12)-Gd(1)-O(7)C	87.4(3)

Table S1. The selected bond lengths and angles for compound 1.

O(5)A-Gd(1)-O(7)C	157.8(3)	O(3)-Gd(1)-O(7)C	74.4(3)
O(19)B-Gd(1)-O(7)C	84.2(3)	O(21)-Gd(1)-O(7)C	124.0(3)
O(12)-Gd(1)-O(8)C	95.1(3)	O(5)A-Gd(1)-O(8)C	149.0(3)
O(3)-Gd(1)-O(8)C	126.7(3)	O(19)B-Gd(1)-O(8)C	96.1(3)
O(21)-Gd(1)-O(8)C	77.5(3)	O(7)C-Gd(1)-O(8)C	52.4(3)
O(12)-Gd(1)-O(20)B	149.0(3)	O(5)A-Gd(1)-O(20)B	79.2(3)
O(3)-Gd(1)-O(20)B	129.4(3)	O(19)B-Gd(1)-O(20)B	52.9(3)
O(8)C-Gd(1)-O(20)B	77.6(3)	O(12)-Gd(1)-C(52)B	173.0(4)
O(21)-Gd(1)-O(20)B	76.7(3)	O(7)C-Gd(1)-O(20)B	110.1(3)
O(5)A-Gd(1)-C(52)B	79.6(4)	O(3)-Gd(1)-C(52)B	103.3(4)
O(19)B-Gd(1)-C(52)B	26.3(3)	O(21)-Gd(1)-C(52)B	102.9(4)
O(7)C-Gd(1)-C(52)B	99.6(4)	O(8)C-Gd(1)-C(52)B	88.7(4)
O(20)B-Gd(1)-C(52)B	26.8(3)	O(12)-Gd(1)-C(22)C	91.0(4)
O(5)A-Gd(1)-C(22)C	173.9(3)	O(3)-Gd(1)-C(22)C	100.0(3)
O(19)B-Gd(1)-C(22)C	90.3(4)	O(21)-Gd(1)-C(22)C	101.4(4)
O(7)C-Gd(1)-C(22)C	25.7(3)	O(8)C-Gd(1)-C(22)C	26.7(3)
O(20)B-Gd(1)-C(22)C	94.7(3)	C(52)B-Gd(1)-C(22)C	95.0(4)
O(10)-Gd(2)-O(6)C	88.1(3)	O(10)-Gd(2)-O(4)D	138.6(3)
O(6)C-Gd(2)-O(4)D	85.4(3)	O(10)-Gd(2)-O(13)E	83.2(3)
O(6)C-Gd(2)-O(13)E	150.4(3)	O(4)D-Gd(2)-O(13)E	82.8(3)
O(10)-Gd(2)-O(25)	64.4(3)	O(6)C-Gd(2)-O(25)	76.8(3)
O(4)D-Gd(2)-O(25)	74.3(3)	O(13)E-Gd(2)-O(25)	74.0(3)
O(10)-Gd(2)-O(17)	134.1(3)	O(6)C-Gd(2)-O(17)	128.6(3)
O(4)D-Gd(2)-O(17)	78.4(3)	O(13)E-Gd(2)-O(17)	75.1(3)
O(25)-Gd(2)-O(17)	140.8(3)	O(10)-Gd(2)-O(2)	77.1(3)
O(6)C-Gd(2)-O(2)	77.1(3)	O(4)D-Gd(2)-O(2)	139.9(3)
O(13)E-Gd(2)-O(2)	127.6(3)	O(25)-Gd(2)-O(2)	133.6(3)
O(17)-Gd(2)-O(2)	84.9(3)	O(10)-Gd(2)-O(18)	146.5(3)
O(6)C-Gd(2)-O(18)	77.3(3)	O(4)D-Gd(2)-O(18)	70.8(3)
O(13)E-Gd(2)-O(18)	123.3(3)	O(25)-Gd(2)-O(18)	137.7(3)
O(17)-Gd(2)-O(18)	51.3(3)	O(2)-Gd(2)-O(18)	70.3(3)
O(10)-Gd(2)-C(45)	150.9(4)	O(6)C-Gd(2)-C(45)	103.1(4)
O(4)D-Gd(2)-C(45)	69.8(4)	O(13)E-Gd(2)-C(45)	98.1(4)

O(2)-Gd(2)-C(45)	79.4(3)	O(18)-Gd(2)-C(45)	26.0(3)
O(14)E-Gd(3)-O(9)	85.6(3)	O(14)E-Gd(3)-O(1)	85.7(3)
O(9)-Gd(3)-O(1)	77.4(3)	O(14)E-Gd(3)-O(24)	106.9(4)
O(9)-Gd(3)-O(24)	72.8(3)	O(1)-Gd(3)-O(24)	146.4(3)
O(14)E-Gd(3)-O(22)	77.6(4)	O(9)-Gd(3)-O(22)	145.7(4)
O(1)-Gd(3)-O(22)	71.7(4)	O(24)-Gd(3)-O(22)	140.7(4)
O(14)E-Gd(3)-O(15)F	146.8(3)	O(9)-Gd(3)-O(15)F	127.6(3)
O(1)-Gd(3)-O(15)F	102.4(3)	O(24)-Gd(3)-O(15)F	84.2(3)
O(22)-Gd(3)-O(15)F	74.7(4)	O(14)E-Gd(3)-O(23)	76.3(3)
O(9)-Gd(3)-O(23)	132.9(4)	O(1)-Gd(3)-O(23)	141.8(3)
O(24)-Gd(3)-O(23)	71.7(3)	O(22)-Gd(3)-O(23)	71.7(4)
O(15)F-Gd(3)-O(23)	77.9(3)	O(14)E-Gd(3)-O(16)F	160.2(3)
O(9)-Gd(3)-O(16)F	75.6(3)	O(1)-Gd(3)-O(16)F	84.4(3)
O(24)-Gd(3)-O(16)F	73.5(3)	O(22)-Gd(3)-O(16)F	115.1(4)
O(15)F-Gd(3)-O(16)F	52.6(3)	O(23)-Gd(3)-O(16)F	121.2(3)
O(14)E-Gd(3)-C(44)F	172.9(4)	O(9)-Gd(3)-C(44)F	101.4(3)
O(1)-Gd(3)-C(44)F	94.7(4)	O(24)-Gd(3)-C(44)F	76.6(4)
O(22)-Gd(3)-C(44)F	95.8(4)	O(15)F-Gd(3)-C(44)F	26.4(3)
O(23)-Gd(3)-C(44)F	99.4(4)	O(16)F-Gd(3)-C(44)F	26.3(3)
C(1)-O(1)-Gd(3)	144.1(8)	C(1)-O(2)-Gd(2)	112.1(8)
C(8)-O(3)-Gd(1)	153.4(8)	C(8)-O(4)-Gd(2)G	145.5(8)
C(21)-O(5)-Gd(1)E	175.5(10)	C(21)-O(6)-Gd(2)F	146.2(8)
C(22)-O(7)-Gd(1)F	95.2(7)	C(22)-O(8)-Gd(1)F	92.2(7)
C(30)-O(9)-Gd(3)	132.2(8)	C(30)-O(10)-Gd(2)	142.8(9)
C(23)-O(12)-Gd(1)	140.9(9)	C(43)-O(13)-Gd(2)A	138.2(8)
C(43)-O(14)-Gd(3)A	153.6(10)	C(44)-O(15)-Gd(3)C	96.5(8)
C(44)-O(16)-Gd(3)C	91.4(7)	C(45)-O(17)-Gd(2)	96.0(8)
C(45)-O(18)-Gd(2)	89.8(9)	C(52)-O(19)-Gd(1)B	93.9(9)
C(52)-O(20)-Gd(1)B	91.0(7)	O(7)-C(22)-Gd(1)F	59.1(7)
O(8)-C(22)-Gd(1)F	61.1(6)	C(19)-C(22)-Gd(1)F	177.0(9)
O(19)-C(52)-Gd(1)B	59.9(7)	O(20)-C(52)-Gd(1)B	62.2(7)
C(48)-C(52)-Gd(1)B	167.8(10)		

Symmetry transformations used to generate equivalent atoms: A: x,y+1,z; B: -x+1,-y+2,-z; C: x+1,y+1,z; D: x+1,y,z; E: x,y-1,z; F: x-1,y-1,z; G: x-1,y,z; H: -x+2,-y+1,-z.

Fig. S1 The coordination environments of Gd^{3+} ions in 1: (a) for Gd1, (b) for Gd 2, (c) for Gd3 and (d) for the coordination geometries of Gd^{3+} ions in 1.

Fig. S2 The coordination modes of the crystallographically independent L^{4-} and HL^{3-} ligands. (Hydrogen atoms are omitted for clarity).

Fig. S3 Thermogravimetric analyses of compound 1. For 1, the two-step weight loss before 300 °C corresponds to the release of lattice water molecules and coordinated water molecules and

other solvent molecules, and the following weight losses correspond to the decomposition of compound 1.

Fig. S4 The powder X-ray diffraction (PXRD) patterns for **1** and **1** heated at 100 °C, 200 °C and 300 °C in the muffle furnace. (under the air atmosphere)

Fig. S5 (a) The solid-state excitation spectra of free H₄L ligands at room temperature ($\lambda_{em} = 275$ nm); (b) The solid-state emission spectra of free H₄L ligands at room temperature, $\lambda_{ex} = 392$ nm; (c) The solid-state excitation spectra ($\lambda_{em} = 459$ nm) and emission spectra ($\lambda_{ex} = 392$ nm) of **1** at room temperature.

Fig. S6 The powder X-ray diffraction (PXRD) patterns for 1 and 1 immersed in 0.1 M aqueous solutions of *o*-NP, *m*-NP, *p*-NP and Fe³⁺ ions.

Fig. S7 Effect on the emission spectra of 1 dispersed in water upon incremental addition of a

m-NP aqueous solution ($\lambda_{ex} = 392$ nm). Inset: Stern-Volmer plot of F_0/F versus the *m*-NP concentration.

Fig. S8 Effect on the emission spectra of 1 dispersed in water upon incremental addition of a *p*-NP aqueous solution ($\lambda_{ex} = 392$ nm). Inset: Stern-Volmer plot of F_0/F versus the *p*-NP concentration. The detection limits were the minimum detectable concentration. In our luminescence titration experiment, the minimum detectable concentrations were 1.67 ppm for *o*-NP, *m*-NP and *p*-NP.

Fig. S9 Fluorescence intensity for 1 dispersed in aqueous solution of $FeCl_3 \cdot 6H_2O$, $Fe_2(SO_4)_3$ $Fe(NO_3)_3 \cdot 9H_2O$ (0.01 M).

Fig. S10 The UV-Vis absorption spectrum of selected small organic molecules.

Fig. S11 The UV-Vis absorption spectrum of **1** dispersed in water upon increasing addition of a *o*-NP aqueous solution.

Fig. S12 The UV-Vis absorption spectrum of **1** dispersed in water upon increasing addition of a *m*-NP aqueous solution.

Fig. S13 The UV-Vis absorption spectrum of **1** dispersed in water upon increasing addition of a *p*-NP aqueous solution.

Fig. S14 Semilog plots of fluorescence decay versus time in different concentrations of *o*-NP, excited and monitored at 392 and 459 nm, respectively.

Fig. S15 Semilog plots of fluorescence decay versus time in different concentrations of m-NP, excited and monitored at 392 and 459 nm, respectively.

Fig. S16 Semilog plots of fluorescence decay versus time in different concentrations of p-NP, excited and monitored at 392 and 459 nm, respectively.

Fig. S17 UV-Vis absorption spectrum of 1 dispersed in water upon increasing addition of a Fe^{3+} aqueous solution.

Fig. S18 The UV-Vis absorption spectrum of the selected 0.01 M different M^{z+} (Cd²⁺, Ca²⁺, Co²⁺, Fe²⁺, Fe³⁺, Mg²⁺, Mn²⁺, Ni²⁺ and Pb²⁺) ions aqueous solution.