Supplementary information for:

Asymmetric cationic lipid based non-viral vectors for an efficient nucleic acid delivery

Rakeshchandra R. Meka^a, Sudhakar Godeshala^a, Srujan Marepally^b, Ketan Thorat^{b,c}, Hari Krishna Reddy Rachamalla^a, Ashish Dhayani^{b,d}, Ankita A. Hiwale^b, Rajkumar Banerjee^a, Arabinda Chaudhuri^a, Praveen Kumar Vemula^{b,e*}

^aBiomaterials Group, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India ^bInstitute for Stem Cell Biology and Regenerative Medicine (inStem), GKVK-post, Bangalore 560065, India ^cManipal University, Manipal, India ^dSASTRA University, Thirumalaisamudram, Thanjavur - 613401, India ^eRamalingaswami Re-Entry Fellow, Dept. of Biotechnology, Govt. of India

*Correspondence email: praveenv@instem.res.in

Table of Contents

Spectral Data 1. Spectral data of Lipid S-S and its intermediates

Figure S1	¹ H-NMR spectra of Di-Octadecylamine
Figure S2	ESI-MASS spectra of Di-Octadecylamine
Figure S3	¹ H-NMR spectra of N, N-bis(2-hydroxyethyl) –N-
	octadecyloctadecan-1-Aminium
Figure S4	ESI-MASS spectra of N, N-bis(2-hydroxyethyl) -N-
	octadecyloctadecan-1-Aminium

2. Spectral data of Lipid S-U and its intermediates

¹ H-NMR spectra of N-Octadecyloctadec-9-en-1 amine
ESI-MASS spectra of N-Octadecyloctadec-9-en-1 amine
¹ H-NMR spectra of N, N-bis(2-hydroxyethyl) –N-
octadecyloctadecan-1-Aminium
ESI-MASS spectra of N, N-bis(2-hydroxyethyl) -N-
octadecyloctadecan-1-Aminium

3. Spectral data of Lipid U-U and its intermediates

Figure S9	¹ H-NMR spectra of Di (Octadec-9-en-1yl)amine
Figure S10	ESI-MASS spectra of Di (Octadec-9-en-1yl)amine
Figure S11	¹ H-NMR spectra of N, N-bis(2-hydroxyethyl) –N-(octadec-9-
	en-1-yl) Octadec-9-1-aminium

Figure S12	ESI-MASS spectra of N, N-bis(2-hydroxyethyl) –N-(octadec-
	9-en-1-yl) Octadec-9-1-aminium

4. HRMS data

Figure S13	HRMS spectra of Lipid S-S
Figure S14	HRMS spectra of Lipid S-U
Figure S15	HRMS spectra of Lipid U-U

5. HPLC Data

Figure S16	HPLC spectra of Lipid S-S
	(A) 100% Methanol (B) 95:5 Methanol:Water (v/v)
Figure S17	HPLC spectra of Lipid S-U
	(A) 100% Methanol (B) 95:5 Methanol:Water (v/v)
Figure S18	HPLC spectra of Lipid U-U
	(A) 100% Methanol (B) 95:5 Methanol:Water (v/v)

6. Gel retardation & cytotoxicity and confocal data

Figure S19Gel retardation assayFigure S20 & 21Cytotoxicity of lipoplexesFigure S22Confocal images

7. Physiochemical characterization of lipoplexes

Table TS1	Size and Zeta potential measurements for liposomes of three
	lipids.

Table TS2Size and Zeta potential measurements for various lipoplexes with
varying lipid/DNA charge ratio.

Fig S1. ¹H-NMR spectra of Di-Octadecylamine.

Fig S2. ESI-MASS spectra of Di-Octadecylamine

Fig S3. ¹H-NMR spectra of N, N-bis(2-hydroxyethyl) –N-octadecyloctadecan-1-Aminium

Fig S4. ESI-MASS spectra of N, N-bis(2-hydroxyethyl) –N-octadecyloctadecan-1-Aminium

Fig S5.¹H-NMR spectra of N-Octadecyloctadec-9-en-1 amine

Fig S6. ESI-MASS spectra of N-Octadecyloctadec-9-en-1 amine

Fig S7.¹H-NMR spectra of N, N-bis(2-hydroxyethyl) –N-octadecyloctadec-9- en-1-aminium

Fig S8. ESI-MASS spectra of N, N-bis(2-hydroxyethyl) –N-octadecyloctadec-9- en-1-aminium

Fig S9.¹H-NMR spectra of Di (Octadec-9-en-1yl) amine

Fig S10.ESI-MASS spectra of Di (Octadec-9-en-1yl) amine

Fig S11.¹H-NMR spectra of N, N-bis (2-hydroxyethyl) –N-(octadec-9-en-1-yl) Octadec-9-1-aminium

Fig S12.ESI-MASS spectra of N, N-bis (2-hydroxyethyl) –N-(octadec-9-en-1-yl) Octadec-9-1-aminium

Fig S13. HRMS spectra of N, N-bis(2-hydroxyethyl) –N-octadecyloctadecan-1-Aminium

Fig S14. HRMS spectra of N, N-bis(2-hydroxyethyl) –N-octadecyloctadec-9- en-1- aminium

Fig S15.HRMS spectra of N, N-bis (2-hydroxyethyl) –N-(octadec-9-en-1-yl) Octadec-9-1-aminium

Figure S16. HPLC spectra of Lipid S-S

A. Solvent system: 100% Methanol

B. Solvent system: 5% Water in Methanol

Figure S 17. HPLC spectra of Lipid S-U

A. Solvent system: 100% Methanol

B. Solvent system: 5% Water in Methanol

Figure S 18. HPLC spectra of Lipid U-U

A. Solvent system: 100% Methanol

B. Solvent system: 5% Water in Methanol

HPLC Conditions:

System:Varian series Column:Lichrospher® 100, RP-18e (5 μm) Mobile Phases: Methanol (A); Methanol:Water, 95:5, v/v, (B). Flow Rate: 2.0 mL/min Typical Column Pressure: 60-65 Bars Detection: UV at 210 nm **Figure S19.** A) DNA binding assay for three lipids with varying lipid/DNA charge ratio, B) DNA degradation profile post DNase I treatment for three lipid formulations with varying lipid/DNA charge ratio.

Figure S20: Cytotoxic effect of lipid-DNA complexes was studied with a) B16F10 (murine melanoma) and b) CHO (Chinese hamster ovary) cells at varying lipid/DNA charge ratio.

Figure S21: Comparative cytotoxic assays with commercial transfection agent lipofectamine 2000 and cationic lipids using CHO (Chinese hamster ovary) cells.

Figure S22. Confocal laser scanning microscope images for endosomal escape of lipoplexes with liposome tagged with NBD-PE (green) and lysosomes trailed with lysotracker red.

	Lipid:DNA Charge Ratio							
Liposomes	8:1		4:1		2:1		1:1	
	HDD (nm)	Zeta Potential (mEV)	HDD (nm)	Zeta Potential (mEV)	HDD (nm)	Zeta Potential (mEV)	HDD (nm)	Zeta Potential (mEV)
Lipid S-S	197.3	+21.4	205.7	+11.7	367.6	+2.8	474.8	-21.5
Lipid S-U	172.5	+25.3	211.8	+15.7	294.7	+6.5	332.8	-08.1
Lipid U-U	187.5	+14.3	234.0	+12.8	369.2	+3.1	441.2	-17.3

Table TS1: Size and Zeta potential measurements for Lipid S-S, S-U and U-U with varying lipid/DNA charge ratio.

 Table TS2: Size and Zeta potential measurements for Lipid S-S, S-U and U-U in DI water

Liposome	Zeta Size (nm)	Potentials(mV)
1	113.2 ± 2.6	28.5 ± 5.82
2	117.5 ± 3.2	46.1 ± 7.82
3	136.7 ± 5.7	30.3 ± 8.24