Electronic Supplementary Material (ESI) for RSC Advances

This journal is @ The Royal Society of Chemistry 2015

Supporting Information

In₂O₃-functionalized MoO₃ heterostructure nanobelts with

improved gas-sensing performance

Su Zhang, Peng Song,* Jia Zhang, Zhuoqi Li, Zhongxi Yang and Qi Wang*

School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, China

* To whom correspondence should be addressed. E-mail: mse_songp@ujn.edu.cn (P. Song), mse_wangq@ujn.edu.cn (Q. Wang); Tel.: +86 531 82765473; fax: +86 531 87974453

NO₂ detection is very important in explosives detection due to it is a decomposition product of many explosive formulations and improvised explosive devices. To find the optimum detection temperature of the In_2O_3 -functionalized MoO₃ heterostructure based sensor, we investigated the response to 10 ppm NO₂ at the operating temperature from 200 °C to 320 °C. As we can see in Fig. S1, with the increase of operating temperature, the response value of as-fabricated sensor is increasing till 280 °C, and then the response value become smaller. So we can infer that the optimum operating temperature of the sensors based on In_2O_3 -functionalized MoO₃ heterostructure to NO₂ is 280 °C. The maximum response is about 21.8. Obviously, the as-obtained sample possesses high sensing properties to NO₂.

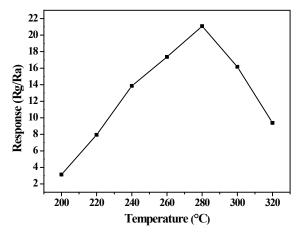


Fig. S1 Response of sensors based on In_2O_3 -functionalized MoO_3 heterostructure to 10 ppm of NO_2 at different operating temperature.

We continuously injected different concentration of NO₂ (5-200 ppm) into the measuring chamber at 280 °C, the resulting curve is shown in Fig. S2. It is obvious that the response of In_2O_3 -functionalized MoO₃ heterostructure based sensor become higher as the concentration increases. Even exposed to low concentration, the In_2O_3 -functionalized MoO₃ heterostructure sensor shows a good response, which means the sensor can be used to detect very low concentration of the target gas.

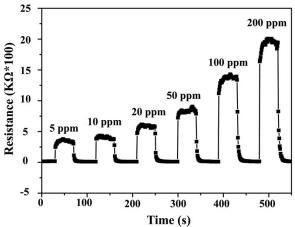


Fig. S2 The response and recovery curves of In_2O_3 -functionalized MoO₃ heterostructure sensors upon exposure to 5-200 ppm of NO₂ at 280 °C.