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Differential scanning calorimetry (DSC) measurements were performed on a calorimeter 

(DSC Q10, PerkinElmer, USA) at 5 °C min-1 under a nitrogen atmosphere. The crystallinity 

(Xc) was calculated using Eq. (1) and the melting enthalpy (ΔHf) obtained from the DSC 

curves:
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where ΔH100 is the crystalline melting enthalpy of perfectly crystalline PVDF (104.7 J g-1).S1

Figure S1. DSC curves of the trilayer and blended fibrous membranes.
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The mechanical properties of the fibrous membranes were investigated using a tensile 

tester (RG2000-100, Shenzhen Reger Instruments Co., Ltd., China) with rectangular 

specimens (length: 100 mm; width: 10 mm; thickness: ~30 µm). All tests were performed at 

28 oC with a speed of 1 mm min−1.

Figure S2 presents the relationship of the breaking elongation and tensile strength of the 

membranes. It is found that the elongation at break and the maximum stress are 72.6%, and 

6.4 MPa for the trilayer fibrous membrane, respectively. The corresponding values are 81.4% 

and 8.4 MPa for the blended fibrous membrane. It is clear the mechanical performance of the 

blended fibrous membrane was improved. 

Figure S2. Stress-strain curves of the fibrous membranes
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Table S1. Comparison of ionic conductivity, rate capability and cyclability of the various ionic liquid-based polymer electrolyte

Membrane Electrolyte component
Electrolyte 

uptake
(%)

Ionic
conductivity

(S cm-1)

Rate capability (Discharge
capacity at various rates)

(mAh g-1)

Cyclability (Capacity
retention after n cycles)

(%)
Ref.

PAN/PMMA fibers 1M LiTFSI in 
PYR14TFSI+PEGDME 480% 3.6 × 10−3

139 (0.1C)
134 (0.2C)
120 (0.5C)
101 (1C)

92% (0.2 C, 50 cycles) S2

P(VdF-HFP) fibers 0.5 M LiTFSI in
BMITFSI 750% 2.3 × 10−3 149 (0.1C)

132 (0.5C) No data S3

P(VdF-co-HFP) fibers 1 M LiTFSI in 
EMImTFSI 700% 4.5 × 10−3 140 (0.1C) 95% (0.1 C, 25 cycles) S4

P(VdF-HFP) fibers 0.5M LiTFSI in 
EMITFSI No data 9.9 × 10−3 164 (0.1C) 98.6% (0.1 C, 50 cycles) S5

BaTiO3/P(VdF-HFP) ibers 0.5 M LiTFSI in
BMITFSI 750% 5.2 × 10−3 165.8 (0.1C) 98.6% (0.1 C, 20 cycles) S6

P(VdF-HFP) fibers 1M LiTFSI in 
PY14TFSI No data <1.0× 10−3 143 (0.1C)

115 (1C) 92% (0.1 C, 55 cycles) S7

PVDF-HFP fibers PMIMTFSI/LiTFSI No data 1.2 × 10−3 151.6 (0.1 C) 96.2% (0.1 C,50 cycles) S8

SiO2/PVDF-HFP  fibers 0.5 M LiTFSI in 
BMITFSI 400% 4.3 × 10−3 169 (0.1 C) 94.4% (0.1 C,80 cycles) S9

CL-PMMA blended 
PVDF/L-PMMA/PVDF 
fibers

0.8M LiTFSI in 
EMITFSI 296% 1.18 ×10-3

151 (0.1C)
138(0.2C)
124 (0.5C)
110 (1C)
102 (2C)

97% (0.1C, 50 cycles) This 
work
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Gif. format images of the CGPE (a), TGPE (b) and Celgard porous membrane after soaked in the 
LiTFSI/EMITFSI electrolyte (c) during streched.

From the images, we can see that during stretched, the CGPE membrane appeared elastic, i.e. it 
was elongated without rupture; while the TGPE membrane was broken. Obviously, the Celgard 
porous membrane showed poor wetting capability when it was immersed in the electrolyte of 
LiTFSI/EMITFSI in spite of good mechanical strength.  
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