Supporting Information

Copolymerization of L-Lactide and ε -Caprolactone Catalyzed by Mono- and

Dinuclear Salen Aluminum Complexes Bearing Bulky

6,6'-Dimethylbiphenyl-Bridge: Random and Tapered Copolymer

Chao Kan, Haiyan Ma*

Shanghai Key Laboratory of Functional Materials Chemistry and Laboratory of Organometallic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China

Haiyan Ma: haiyanma@ecust.edu.cn

* To whom correspondence should be addressed. Tel./Fax: +86 21 64253519. E-mail: haiyanma@ecust.edu.cn.

Table of contents

1. NMR spectra and thermal properties of polymers

Figure S1. The ¹H NMR spectrum of $poly(L-LA-ran-\varepsilon-CL)$ produced by complex **3**. (CDCl₃, 400 MHz)

Figure S2. The ¹H NMR spectrum of $poly(L-LA-tap-\varepsilon-CL)$ produced by complex 6. (CDCl₃, 400 MHz)

Figure S3. The DSC curves of $poly(L-LA-ran-\varepsilon-CL)$ produced by complex **3**. (top: LA/CL = 6 : 4; middle: LA/CL = 5 : 5; bottom: LA/CL = 4 : 6)

Figure S4. The DSC curves of poly(*L*-LA-*tap*-ε-CL) produced by complex **6**.

2. Determination of reactivity ratios

1. NMR spectra and thermal properties of the copolymers

Figure S1. The ¹H NMR spectrum of $poly(L-LA-ran-\varepsilon-CL)$ produced by complex **3**. (CDCl₃, 400 MHz)

Figure S2. The ¹H NMR spectrum of $poly(L-LA-tap-\varepsilon-CL)$ produced by complex **6**. (CDCl₃, 400 MHz)

Figure S3. The DSC curves of $poly(L-LA-ran-\varepsilon-CL)$ produced by complex **3**. (top: LA/CL = 6 : 4; middle: LA/CL = 5 : 5; bottom: LA/CL = 4 : 6)

Figure S4. The DSC curves of poly(*L*-LA-*tap*-ε-CL) produced by complex **6**.

2. Determination of reactivity ratios: the reactivity ratios were calculated using the nonlinear least squares (NLLS) method, carrying out the copolymerizations at low conversion with different ratios of the two monomers.

$f_{\Pi,A1}^{b}$	$f_{\rm ICLI}^{b}$	Conv. ^c	Conv. ^c	F_{LA}^{d}	F_{CL}^{d}	x	y	α	F	G	$F/\alpha+F$	$G/\alpha + F$
5 [ER]	3[en]	LA	CL	Ent	CL		2					
0.190	0.810	3.08	2.48	0.226	0.774	0.235	0.292	0.222	0.188	-0.569	0.460	-1.387
0.400	0.600	14.32	11.65	0.450	0.550	0.667	0.818	0.222	0.543	-0.148	0.710	-0.194
0.505	0.495	8.93	8.11	0.534	0.466	1.020	1.146	0.222	0.926	0.131	0.807	0.114
0.600	0.400	7.08	7.05	0.603	0.397	1.500	1.519	0.222	1.481	0.512	0.870	0.301
0.708	0.292	4.35	3.54	0.747	0.253	2.424	2.953	0.222	1.991	1.603	0.900	0.725
0.832	0.168	3.90	3.01	0.865	0.135	4.952	6.407	0.222	3.828	4.179	0.945	1.030

Table S1. Copolymerization entries at low monomer conversions^a

^{*a*} T = 110 °C, in 0.4 mL toluene; ^{*b*} ([*L*-LA]+[ε -CL])/[Cat.] = 200, [Cat.] = 25mM; ^{*c*} mononer conversion as determined by ¹H NMR spectroscopy; ^{*d*} LA and CL composition in the copolymer.

 $r_{LA} = k_{LALA} / k_{LACL} \quad r_{CL} = k_{CLCL} / k_{CLIA} \implies \frac{d[LA]}{d[CL]} = \frac{[LA]}{[CL]} \frac{n_{A}[LA] + [CL]}{r_{CL}[CL] + [LA]}$ $r_{CL} = \frac{[LA]}{[CL]} \left\{ \frac{d[LA]}{d[CL]} (1 + \frac{n_{LA}[LA]}{[CL]} - 1) \right\}$ define: $y = F_{LA} / F_{CL} \quad x = [LA] / [CL]$ the above formula can be simplified to : $y = x \frac{n_{A} + 1}{r_{CL} + x}$

conversion:
$$x - \frac{x}{y} = r_{LA} \frac{x^2}{y} - r_{CL}$$

define: $G = x - \frac{x}{y}$, $F = \frac{x^2}{y}$, $\alpha = (F \min/F \max)^{1/2}$

simplified: $\frac{G}{\alpha + F} = (r_{\text{LA}} + \frac{r_{\text{CL}}}{\alpha})\frac{F}{\alpha + F} - \frac{r_{\text{CL}}}{\alpha}$

Figure S5. linear relationship of $F/\alpha+F$ and $G/\alpha+F$ (slope is 4.71, intercept of vertical is 3.59, R = 0.988)