Supporting Information

A green adsorbent derived from banana peel for highly effective removal of heavy metal ions from water

Yingchun Li^{a,b,*} Jiang Liu^a Qunhui Yuan^c Hui Tang^a Feng Yu^{b,*} Xin Lv^{d,*}

^a Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education; School

of Pharmacy, Shihezi University, Shihezi, 832000, China

^b Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of

Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China

^c School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.

^d Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, School of Agriculture, Shihezi University, Shihezi 832003, China

*Corresponding authors

Yingchun Li^{a,b,*}, Feng Yu^{b,*}, Xin Lv^{d,*}

E-mail: yingchunli@shzu.edu.cn, yufeng05@mail.ipc.ac.cn, lxshz@126.com

Tel/Fax: +86-993-2057005, 0993-2033352

 Table S1 Adsorption isotherm models.

Adsorption isotherm equations		Symbol definition
Langmuir	$Q_{\rm e} = (K_{\rm L}Q_{\rm m} C_{\rm e})/(1 + K_{\rm L} C_{\rm e})$	$Q_{\rm e}$ – adsorption capacity at equilibrium (mg/g)
Freundlich	$Q_{\rm e} = K_{\rm F} C_{\rm e}^{1/{\rm n}}$	$Q_{\rm m}$ – maximum adsorption capacity (mg/g)
		$C_{\rm e}$ – equilibrium concentration (mg/L)
		$K_{\rm L}$ – Langmuir adsorption constant (L/mg)
		$K_{\rm F}$ – Freundlich adsorption capacity (mg/g)
		n – Freundlich dimensionless constant

 Table S2 Adsorption kinetic models.

Adsorption kinetic equ	ations	Symbol definition
Pseudo-first order	$\log(Q_{\rm e} - Q_{\rm t}) = \log Q_{\rm e} - (k_1 t)/2.303$	$Q_{\rm e}$ and $Q_{\rm t}$ – adsorption capacity at equilibrium
		and at time $t (mg/g)$
Pseudo-second order	$t/Q_{\rm t} = 1/(k_2 Q_{\rm e}^2) + t/Q_{\rm e}$	k_1 -first order rate constant(min ⁻¹)
		k_2 -second order rate constant (kg/mmol·min)