Supporting Information

Rh(III)-catalyzed C–H oxidative *ortho*-olefination of arenes using 7-azaindole as a directing group and utilization in the construction of new tetracyclic heterocycles containing 7azaindole skeleton

Bin Liu, Ridong Li, Wei Zhan, Xin Wang, Zemei Ge* and Runtao Li*

State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.

*E-mail: lirt@bjmu.edu.cn

Content

Deuterium-Labeling Result and Kinetic Isotope Effect	S2
Identification of product 4a (¹ H, ¹³ C, HMBC)	S3
General Procedure for starting materials	S4
¹ H NMR and ¹³ C NMR Spectra (CDCl ₃ , ¹ H 400 MHz, ¹³ C 100 MHz)	S5

Deuterium-Labeling Result and Kinetic Isotope Effect

H/D exchange experiments

KIE experiments

Identification of product 4a (¹H, ¹³C, HMBC)

General Procedure for starting materials

1. All of the starting materials were known according to the reported literature¹⁻⁴, except for 1m.

(1) G. Y. Qian, X. H. Hong, B. X. Liu, H. Mao and B. Xu, Org. Lett. 2014, 16, 5294-5297.

(2) Z. X. Zhang, Z. Yang, H. Wong, J. L. Zhu, N. A. MeanWell, J. F. Kadow and T. Wang, *J. Org. Chem.* 2002, 67, 6226-6227.

(3) S. S. Li, C. Q. Wang, H. Lin, X. M. Zhang and L. Dong, Org. Lett. 2015, 17, 3018-3021.

(4) B. Liu, X. Wang, Z. M. Ge and R. T. Li, Org. Biomol. Chem. 2016, 14, 2944-2949.

White solid, ¹H NMR (400 MHz, CDCl₃) δ 8.68 (dd, J = 7.9, 1.5 Hz, 1H), 8.47 (dd, J = 4.7, 1.6 Hz, 1H), 8.14 (s, 1H), 7.77 – 7.67 (m, 2H), 7.58 (t, J = 7.8 Hz, 2H), 7.46 (t, J = 7.4 Hz, 1H), 7.34 (dd, J = 7.9, 4.7 Hz, 1H), 4.01 (dt, J = 13.3, 6.6 Hz, 1H), 3.61 (dt, J = 13.7, 6.8 Hz, 1H), 1.59 (d, J = 6.8 Hz, 6H), 1.23 (d, J = 6.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 186.3, 166.9, 148.4, 145.6, 136.9, 136.6, 131.0, 129.7, 128.1, 124.8, 119.6, 119.3, 113.2, 50.2, 46.1, 20.9, 20.4. HRMS m/z (ESI) calcd for C₂₁H₂₄N₃O₂ (M+H)⁺: 350.1863, found 350.1855.

¹H NMR and ¹³C NMR Spectra (CDCl₃, ¹H 400 MHz, ¹³C 100 MHz)

¹H NMR of 1m

¹³ C NMR of 1m

¹H NMR of 3a

¹³ C NMR of 3a

¹H NMR of 3b

¹³ C NMR of 3b

¹H NMR of 3c

S8

¹H NMR of 3d

¹³ C NMR of 3d

¹H NMR of 3e

¹³ C NMR of 3e

¹H NMR of 3f

¹³ C NMR of 3f

¹H NMR of 3g

¹³ C NMR of 3g

¹H NMR of 3h

¹³ C NMR of 3h

¹H NMR of 3i

¹³ C NMR of 3i

¹H NMR of 3j

¹³ C NMR of 3j

¹H NMR of 3k

¹³ C NMR of 3k

¹H NMR of 3l

¹³ C NMR of 3l

¹H NMR of 3m

170

160

150

140

130

120

80

70

60

50

40

30

20

10

90

fl (ppm)

100

110

800 -700 -600 -500 -400 -300 -200 -100 -100 -100 -200

0

¹H NMR of 3n

¹H NMR of 30

¹³ C NMR of 30

¹H NMR of 3p

¹³ C NMR of 3p

¹H NMR of 3q

¹³ C NMR of 3q

¹H NMR of 3r

¹³ C NMR of 3r

S24

¹H NMR of 3t

fl (ppm)

¹H NMR of 3u

S26

¹H NMR of 3v

¹H NMR of 4a

¹³ C NMR of 4a

¹H NMR of 4b

¹³ C NMR of 4b

¹H NMR of 4c

¹H NMR of 4d

¹³ C NMR of 4d

