Supplementary Information

An enhanced oxygen electrode catalyst by incorporating CoO/SnO₂ nanoparticles in crumpled nitrogen-doped graphene in alkaline media

Xiu-Xiu Ma^a, and Xing-Quan He^{a*}

^aSchool of Materials Science and Engineering, Changchun University of Science and

Technology, Changchun 130022, R.P. China

*Corresponding Author

E-mail:

hexingquan@hotmail.com

Fig. S1 (a) XRD patterns of SnO₂/NG-500 and CoO/SnO₂/NG-500; (b-e) The nitrogen adsorptiondesorption isotherm and the pore distribution curves inset for CoO/NG-500 (b), SnO₂/NG-500 (c), NG-500 (d) and r-GO-500 (e); (f) The average pore width values of CoO/SnO₂/NG-500, SnO₂/NG-500, CoO/NG-500, NG-500 and r-GO-500.

Sample	BET Surface Area (m ² g ⁻¹)	Average Pore Size (nm)
CoO/SnO ₂ /NG-500	282.2	45.1
CoO/NG-500	173.5	49.4
SnO ₂ /NG-500	195.5	40.5
NG-500	359.7	64.0
r-GO-500	509.4	34.5

 Table S1 BET surface area and average pore size for the samples obtained from nitrogen

 adsorption-desorption isotherm.

Table S2 XPS datas of CoO/SnO₂/NG-500, CoO/SnO₂/NG, CoO/NG-500, SnO₂/NG-500, NG-

500 and r-GO-500.

Sample	C 1s	O 1s	N 1s	Co 2p	Sn 3d	$\Delta \mathrm{B} E_{\mathrm{O-Sn}}$
	(eV)	(eV)	(eV)	(eV)	(eV)	
CoO/SnO ₂ /NG-500	284.8	530.2	400.1	781.1	487.2	43.0
CoO/SnO ₂ /NG	284.50	531.8	399.2	781.4	486.6	45.2
CoO/NG-500	284.65	530.1	400.3	780.3	-	-
SnO ₂ /NG-500	284.7	531.2	399.7	-	486.9	44.3
NG-500	284.8	531.9	398.5	-	-	-
r-GO-500	284.7	532.0	-	-	-	-

Fig. S2 (a,b,c) SEM images of r-GO-500 (a), CoO/NG-500 (b), and SnO₂/NG-500 (c); (d-i) EDX

mapping of CoO/SnO₂/NG-500.

Fig. S3 High resolution XPS spectra of (a) Sn 3d in SnO₂/NG-500 and (b) Co 2p in CoO/NG-500.

Fig. S4 (a, b) Cycle voltammograms (a) and linear sweep voltammogram measurements (b) of CoO/SnO₂/NG at different temperature; (c, d) LSV polarization curves (c) and K-L plots (d) at different potentials for CoO/SnO₂/NG-500 in an O₂-saturated 0.1 M KOH at 1600 rpm; (e) The n values at various potentials of CoO/SnO₂/NG-500.

Catalyst	Tafel Slope	Reference
	(mV dec ⁻¹)	
CoO/SnO ₂ /NG-500	33	This work
N-CG-CoO	48	Energy Environ. Sci. 2014, 7, 609–616.
Co(OH) ₂	62	ACS Appl. Mater. Interfaces 2015, 7, 12930-12936.
Co-N-CNT	40	ACS Appl. Mater. Interfaces 2015, 7, 4048-4055.
Co _{0.5} Fe _{0.5} S@N-MC	67	ACS Appl. Mater. Interfaces 2015, 7, 1207–1218.
Co(OH) _x -NCNT	54	ACS Appl. Mater. Interfaces 2016, 8, 1571–1577.
Co(OH) _x -CNT	90	ACS Appl. Mater. Interfaces 2016, 8, 1571–1577.
CoS ₂ (400)/N,S-GO	75	ACS Catal. 2015, 5, 3625–3637.

 Table S3 Recent literature on the ORR performance.

Catalyst	$\mathfrak{y}_{J=10} \ [mV$	Tafel Slope	Reference
	vs. SCE]	[mV dec ⁻¹]	
CoO/SnO ₂ /NG-500	285	41	This work
N-CG-CoO	334	71	Energy Environ. Sci., 2014, 7, 609–616.
CoFe ₂ O ₄ /PANI-	314	31	J. Mater. Chem. A, 2016.
MWCNT			
CoP/rGO	340	66	Chem. Sci., 2016, 7, 1690–1695.
CoSe	-	40	Electrochimica Acta, 2016, 194 , 59–66.
Co ₃ O ₄ /N-CNT–GNR	360	44	J. Mater. Chem. A, 2015, 3 , 13371–
			13376.
CNCNT	310	50	ACS Appl. Mater. Interfaces, 2015, 7,
			4048-4055.
NCNT/Co _x Mn _{1-x} O	340	40	Nano Energy, 2016, 20 , 315–325.
Co(OH) _x -NCNT	380	36	ACS Appl. Mater. Interfaces, 2016, 8,
			1571–1577.

Table S4 Recent literature on the OER performance.