Electronic Supplementary Information (ESI)

Shape and stoichiometry control of bismuth selenide nanocrystals in colloidal synthesis

Yan Jiang^a, Mengmeng Hao^a, Liangxing Jiang^a, Fangyang Liu^{a,b}, Yexiang Liu^a.

^aSchool of Metallurgical Science and Engineering, Central South University, Changsha,

410083, China.

^bSchool of Photovoltaic and Renewable Energy Engineering, University of New South Wales,

Sydney, NSW 2052, Australia.

*Corresponding author. E-mail: liufangyang@csu.edu.cn.

Experimental Details

Chemical reagent:

Bi(NO₃)₃·5H₂O (\geq 99.0), oleyl amine (80%-90%) and Se powder (\geq 99.9) were obtained from Shanghai Jingchun Co/ Ltd.

Preparation for Bi₂Se₃, Bi₈Se₉ and Bi_{1.007}Se_{0.993} films:

 Bi_2Se_3 , Bi_8Se_9 and $Bi_{1.007}Se_{0.993}$ nanocrystals were dissolved in toluene solution. To prepare films for photoelectrochemical tests, 0.2-0.3 mL solution of the materials was coated on ITO glass, respectively. Then the samples were kept in the draught cupboard to naturally evaporate toluene.

Materials characterizations

TEM images were obtained on a JEM-2100F field-emission transmission electron microscope with a working voltage of 200 kV. X-ray diffraction analysis was performed with rigaku-3014; X-Ray Fluorescence data were obtained from Shimadzu XRF-1800. The optical absorption spectra were collected using a Hitachi U-4100 spectrophotometer. X-ray photoelectron spectroscopy (XPS) analysis was performed with the Spectrometer of Thermo-VG Scientific ESCALAB 250Xi. The photoelectrochemical characterization was carried out in 0.1 M Na₂SO₄ solution in a Pyrex electrolytic cell. A 300 W xenon lamp was used as the light source, and the light intensity was kept at 40 mW/cm².

Table 1. XRF analysis of Bi_2Se_3 , Bi_8Se_9 and $Bi_{1.007}Se_{0.993}$.

	Bi(At%)	Se(At%)	Bi:Se(At%)
Bi ₂ Se ₃	40.71	59.28	4.1:6
Bi ₈ Se ₉	45.66	54.33	5.1:6
Bi _{1.007} Se _{0.993}	50.26	49.73	1:1

Fig. S1 (a)TEM and (b)HRTEM images of hexagonal Bi₂Se₃.

Fig. S2 (a)TEM and (b)HRTEM images of disk-like Bi₈Se₉.

Fig. S3 (a)TEM and (b)HRTEM images of octahedron-like Bi_{1.007}Se_{0.993}.

Fig. S4 Crystal size distribution of (a)Bi₂Se₃, (b)Bi₈Se₉ and (c)Bi_{1.007}Se_{0.993}.

Fig. S5 XPS spectra of Bi 4f for Bi₈Se₉.

Fig. S6 XPS spectra of Bi 4f for $Bi_{1.007}Se_{0.993}$.

Fig. S7 Simulated single crystal structure of Bi_2Se_3 , Bi_8Se_9 and $Bi_{1.007}Se_{0.993}$. Purple ball represents Bi atom and green ball represents Se atom.

Fig. S8 Bi-precursors kept at 220 °C, 250 °C and 290 °C.

Fig. S9 Optical absorbance spectra of Bi_2Se_3 , Bi_8Se_9 and $Bi_{1.007}Se_{0.993}$.

Fig. S10 Bandgap values of (a) Bi_2Se_3 , (b) Bi_8Se_9 and (c) $Bi_{1.007}Se_{0.993}$.

Fig. S11 J-V curves of (a) Bi₂Se₃, (b) Bi₈Se₉ and (c) Bi_{1.007}Se_{0.993}.