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S1 Grain Boundary Burger’s Vector

Consider the general grain boundary (GB) shown in Figure 1a of the main text. Let the oper-

ations S, S′ map the grains G, G′ onto some reference crystal. Let vint be an unit interfacial

vector along the interface between these two grains. Then, Svint, S′vint give the mapping of the

unit interfacial vector vint in the reference crystal. Thus, the Burger’s vector, per-unit length

along the interface is given by

n = (S− S′)vint. (S1)

This is the famous Frank-Bilby equation. Since the reference crystal is invariant under the

operation of any members of its symmetry point group, more generally we can write

n = (PS−P′S′)vint, (S2)

whereP, P′ are members of the symmetry group of the reference crystal. Since the reference con-

figuration is arbitrary, for convenience we take it to coincide with the grain G, thus S = I, where

I is the identity operator. Taking a coordinate system with the unit vector e1 parallel to the lat-
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tice vector v1 (Figure 1a of main text), we get vint = R−π/2+(θM−θL)/2e1, S
′ = R−π/2−(θM+θL)/2

where Rθ represents a positive rotation by angle θ, and θM, θL are the misorientation angle and

the line angle, respectively, as discussed in the main text. Since graphene lattice has a six-fold

symmetry axis, P, P′ are of the form RNπ/3, where N is an integer. Substituting these in

Equation S2 and simplifying, we get

n =


2 sin(θM/2) (cos(θL/2)e1 − sin(θL/2)e2) for 0 ≤ θM ≤ 30◦

2 sin(60◦ − θM/2) (cos(θL/2)e1 − sin(θL/2)e2) for 0 ≤ θM ≤ 60◦,

(S3)

where we choose P, P′ to minimize the norm of n.

S2 Minimization Problem

Equation 1 of the main text can be expanded into following two scalar equations (assuming

θ0M < 30◦)

2δn1 + δn2 − δn3 = 2δθM cos(θ0M/2) cos(θ0L/2)− 2δθL sin(θ0M/2) sin(θ0L/2), (S4)
√

3δn2 +
√

3δn3 = −2δθM cos(θ0M/2) sin(θ0L/2)− 2δθL sin(θ0M/2) cos(θ0L/2). (S5)

These can be rewritten as follows for convenience of notation

2δn1 + δn2 − δn3 = d1, (S6)

δn2 + δn3 = d2, (S7)

where

d1 = 2δθM cos(θ0M/2) cos(θ0L/2)− 2δθL sin(θ0M/2) sin(θ0L/2), (S8)

d2 = −2δθM cos(θ0M/2) sin(θ0L/2)/
√

3− 2δθL sin(θ0M/2) cos(θ0L/2)/
√

3. (S9)

We can eliminate δn2, δn3, to get

δn2 =
d1 + d2

2
− δn1, δn3 =

d2 − d1
2

+ δn1. (S10)
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Thus, the constrained minimization problem given by Equation 2 of the main text can be written

as the following unconstrained problem

Min. c1|δn1|+ c2

∣∣∣∣d1 + d2
2

− δn1
∣∣∣∣+ c3

∣∣∣∣d2 − d12
+ δn1

∣∣∣∣ . (S11)

This is a linear minimization problem, and can be solved trivially. The minimum occurs at

either δn1 = 0 or δn1 = (d1 + d2)/2 or δn1 = (d1 − d2)/2, and the corresponding values of the

minima are c2|(d1 + d2)/2|+ c3|(d1− d2)/2| or c1|(d1 + d2)/2|+ c3|d2| or c1|(d1− d2)/2|+ c2|d2|.

In all cases it can be seen that the solution to the minimization problem posed by Equation 2

of the main text is of the following form

γ(θ0M + δθM, θ
0
L + δθL) = γ(θ0M, θ

0
L) +

Gb

4π(1− µ)
(A1|δθM +A2δθL|+A3|δθM +A4δθL|) , (S12)

where A′is are suitable constants. The above equation can be specialized for symmetric bound-

aries by setting θL = δθL = 0 to get

γ(θ0M + δθM, 0) = γ(θ0M, 0) +
Gb

4π(1− µ)
(A1|δθM|) , (S13)

where A1 is a new effective constant. This has the same asymptotic form near θ0M as the

parametrization presented by Equation 3 of the main text.

S2.1 Symmetric Low Angle GBs

The solution becomes much simpler for low angle grain boundaries with θ0L = θ0M = δθL = 0◦.

For this case we get d1 = 2δθM, d2 = 0. The solution δn1 = 0 corresponds to energy of

(c2 + c3)|δθM|, while the solutions with δn1 = (d1 ± d2)/2 correspond to energy of c1|δθM|. It is

reasonable to assume that (c2+c3) > c1, since physically c1, c2, c3 should be roughly equal. Thus

the perturbation corresponding the minimum energy leads to the solution δn1 = (d1 ± d2)/2,

δn2 = δn3 = 0, which means that the low angle GBs only contain dislocations with Burger’s

vectors aligned along the e1 direction (as described in the main text).

S2.2 Symmetric High Angle GBs

A similar analysis, accounting for the form of the Burger’s vector at high angles (Equation S3),

shows that under similar assumptions, it is energetically favorable to align the dislocation cores
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with two out of the three directions (as described in the main text).

S2.3 General GBs

The general expansion of the energy of a GB vicinal to a high symmetry (low Σ CSL) GB is given

by Equation S12. However, the most general functional form that has the correct asymptotic

expansion, as well as satisfies all the symmetry requirements will be extremely complicated.

Thus, we use the observation from the numerically measured GB energy (and the theoretical

arguments provided before) that the GB energy varies slowly in the θL direction, and that there

seem to be two kinds of ridges (as discussed in the main text) to reduce the number of free

parameters at a general cusp from four to two, and propose the form given by Equation 4 of the

main text.

S3 Numerical Fits

Figure Figure S1 shows the effect of including higher harmonics in the fits to symmetric GB

energy by increasing n in Equation 3 of main text. It can be seen that adding further harmonics

has only a marginal effect on the quality of the fits.

Figure Figure S2 shows the effect of attempting to fit the symmetric GB to a Fourier series

that does not have the correct form of the cusp singularity, i.e.,

γsym(θM) =
Gb

4π(1− µ)

(
Σn
i=0pi cos 3iθM

)
. (S14)

It can be seen that even a series with n = 50 terms is not able to capture the sharp cusp

singularity properly.

Finally, the fitting parameters for the best fit shown in Figure 4 of the main text are as

follows: p02 = −3.89 × 10−3, p04 = −1.04 × 10−3, p13 = −1.37 × 10−3, p20 = −3.96 × 10−2,

p22 = −3.07×10−4, p24 = −4.70×10−4, p31 = −2.08×10−3, p33 = 1.50×10−4, p40 = 2.93×10−2,

p42 = −1.61× 10−3, p44 = 1.64× 10−5, at1 = 1.08× 10−1, as1 = 2.17× 10−1, at2 = −2.61× 10−1,

as2 = 1.11.
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Figure S1: (Color Online) The fit of numerically measured GB energy for all symmetric GBs
to Equation 3 of the main text with varying number of terms. (a), (b), (c), (d) correspond to
n = 4, 5, 6, 10, respectively. It can be seen that the improvement on adding further harmonics
is marginal. The filled black circles show the simulation data, while the solid line is a fit to
Equation 3 of the main text. The filled red circles show the magnitude of the fitting error.
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Figure S2: (Color Online) The fit of numerically measured GB energy for all symmetric GBs to
Equation S14 with varying number of terms. (a), (b), (c), (d) correspond to n = 4, 10, 20, 50, re-
spectively. It can be seen that a simple Fourier expansion without adding the correct asymptotic
term for the cusps leads to very poor performance. Expansions with even 150 terms are not able
to capture the singularity at the cusp effectively. The filled black circles show the simulation
data, while the solid line is a fit to Equation S14. The filled red circles show the magnitude of
the fitting error.
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Figure S3: (Color Online) The maximum out of plane deformation in units of Å, as a function
for the misorientation angle, θM, and the line angle θL.

S4 Out Of Plane Deformation

Our simulations allow for unconstrained out of plane relaxation for the GB structures, since such

relaxation is essential for lowering the energy of the structure. Figure Figure S3 the maximum

out of plane displacement as a function of the misorientation angle and the line angle. It can be

seen that the low angle grain boundaries have the largest out of plane displacement.
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