Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Microstructured Macroporous Adsorbent Composed of Polypyrrole Modified Natural Corncob-core Sponge for Cr(VI) Removal

Jianqiao Zhang[&], Huan Chen[&], Zi Chen, Jiaojie He, Wenxin Shi, Dongmei Liu, Huizhong Chi, Fuyi Cui, Wei Wang*

State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of

Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, P.R.

China, Email: wangweirs@hit.edu.cn

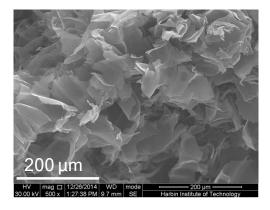


Figure S1. SEM of pure corncob-core, which is composed of quasi-two dimensional microsheets.

Figure S2. A FE-SEM image of the as-prepared CC-PPy. There is no PPy particles emerged in the sponse pores, indicating that PPy grew along the corncob-core micro-sheets.

Table S1. The PPy loading of the three composite CC-PPy samples demonstrated in Figure 4b.

mass	ratio b	etween	1:2	1:1	2:1

Py to CC during			
polymerization			
PPy	0.4424 g	0.7120 g	1.2162 g
CC	0.4082 g	0.4091 g	0.4207 g
CC-PPy	0.8506 g	1.1211 g	1.6369 g
Loading ratio	52%	64%	74%

Table S2. Kinetics parameters for Cr(VI) adsorption onto the CC-PPy sponses.

Concentration of	pseudo-first-order	Pseudo-second-order	
Cr(VI) ions (mg/L)	R^2	R^2	$k_2(g \cdot mg^{-1}min^{-1})$
50	0.7225	0.998	0.0023
100	0.4473	0.995	0.0005
150	0.5826	0.994	0.0002
200	0.5094	0.992	0.0001

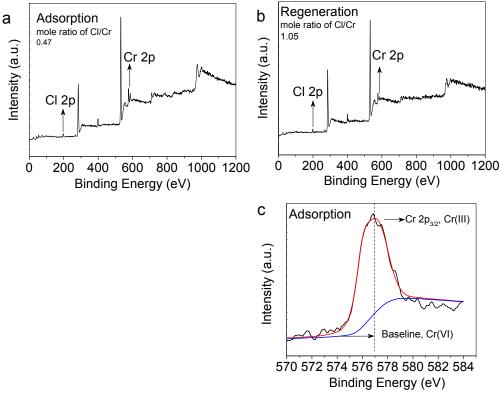


Figure S3. XPS survey-spectra of CC-PPy after adsorption (a) and after adsorption followed by regeneration (b); wide scan of Cr $2p_{3/2}$ for the sample after regeneration (c).

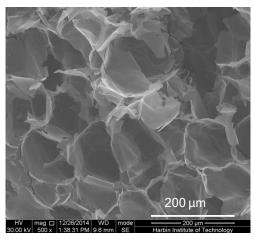


Figure S4. SEM of CC-PPy after adsorption of Cr(VI).