Supporting Information

A profluorescent nitroxide probe for ascorbic acid detection and its application to quantitative analysis of diabetic rat plasma

Yuta Matsuoka,^{a,b} Kei Ohkubo,^{b,c} Toshihide Yamasaki,^{a,d} Mayumi Yamato,^e Hiroshi Ohtabu,^a Tomonori Shirouzu,^a Shunichi Fukuzumi^{*c,f} and Ken-ichi Yamada,^{*,a,g}

(a) Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku,

Fukuoka 812-8582, Japan

(b) Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology Agency (JST), 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan

(c) Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea

(d) Aix-Marseille Université, Institut de Chimie Radicalaire, Case 551 - Campus St Jérôme, Avenue Escadrille Normandie Niemen,

13397 Marseille, Cedex 20 (France)

(e) Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan

(f) Faculty of Science and Technology, Meijo University and ALCA and SENTAN, Japan Science and Technology Agency (JST),

Shiogamaguchi, Tempaku, Nagoya, Aichi 468-8502, Japan

(g) JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

E-mail: fukuzumi@chem.eng.osaka-u.ac.jp E-mail: kenyamada@phar.kyushu-u.ac.jp

Supplemental Scheme S1. Synthesis of 2 and Nile-DiPy

Reagents and conditions: (a) 5-(ethylamino)-4-methyl-2-nitrosphenol hydrochloride, NaNO₂, conc.

HCl, EtOH (b) FeSO₄ · 7H₂O, H₂O₂, DMSO

Figure S1. (a) Absorption spectrum in various pH concentration and (b) Dependence on pH of 5 μ M Nile-DiPy. Buffer was prepared as following pH solution: pH 5.0, 6.0, 7.0, 8.0, 8.5, 9.0, 9.5, 10, 11.

Figure S2. Near-IR phosphorescence spectra of the ${}^{1}O_{2}$ generated from C₆₀ (red) and Nile-DiPy (black) excited at 532 nm in C₆D₆

Figure S3. Cyclic voltammograms showing oxidation potential (a) and reduction potential (b) of 0.1 mM Nile-DiPy (red), **1** (black) in MeOH containing 0,10 M TBAPF₆ as a supporting electrolyte

Figure S4. Second-harmonic alternating current voltammograms showing reduction potential of 0.1 mM Nile-DiPy in MeOH containing 0,10 M TBAPF₆ as a supporting electrolyte

	Lifetime of the singlet
compound	excited state, s ⁻¹
Nile-DiPy	4.9×10 ⁹
Nile-TEMPO	4.5×10 ⁹
1	5.8×10 ⁸
2	5.5×10 ⁸

Table S1. Lifetime of the singlet excited state of Nile Blue derivatives in aqueous solution containing5% DMSO

Figure S6. (a) Nanosecond transient absorption spectra of Nile-DiPy in N₂-saturated H_2O at 298 K after 627 nm laser excitation

Figure S7. Standard curve constructed using 0, 1, 2, 3, 4 and 5 μM ascorbic acid and 20 μM Nile-DiPy