Hierarchical structured polymers for light-absorption enhancement of silicon-based solar power systems

Jung Woo Leem,[‡] Minkyu Choi,[‡] Bhaskar Dudem, and Jae Su Yu*

Department of Electronics and Radio Engineering, Kyung Hee University,

1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea

*Authors to whom correspondence should be addressed:

jsyu@khu.ac.kr

[‡]These authors contributed equally to this work

Supporting Information

Fig. S1 Schematic diagram of the mechanism for the extension of effective optical path lengths in micropyramidal arrays.

Fig. S2 Sequential photographs for a cleaning behaviour of the reference Si solar module with the bare PET cover by water droplets.

Fig. S3 Photograph of a water droplet on the surface of the flat NOA63 film:PET (F-NOA63:PET).

HS-Si mold						
Stamp		RHS-PDMS (No.1)	RHS-PDMS (No.2)	RHS-PDMS (No.3)	RHS-PDMS (No.4)	RHS-PDMS (No.5)
HS-NOA63:PET (No.1)	T _{avg} (%)	94.04 ^(a) ±0.17 ^(b)	94.10±0.01	94.06±0.02	94.06±0.11	94.03±0.04
	T _{sw} (%)	94.20±0.19	94.21±0.01	94.19±0.02	94.17±0.12	94.13±0.03
HS-NOA63:PET (No.2)	T _{avg} (%)	94.16±0.04	94.17±0.21	93.96±0.07	94.00±0.10	93.87±0.11
	T _{sw} (%)	94.26±0.03	94.27±0.19	94.09±0.06	94.10±0.09	94.00±0.11
HS-NOA63:PET (No.3)	T _{avg} (%)	93.96±0.18	93.98±0.09	94.13±0.08	93.94±0.02	93.99±0.06
	T _{sw} (%)	94.05±0.20	94.11±0.10	94.24±0.08	94.05±0.01	94.10±0.05
HS-NOA63:PET (No.4)	T _{avg} (%)	94.05±0.02	94.02±0.07	93.97±0.13	93.76±0.11	93.93±0.08
	T _{sw} (%)	94.20±0.01	94.18±0.06	94.06±0.15	93.86±0.08	94.04±0.10
HS-NOA63:PET (No.5)	T _{avg} (%)	93.95±0.15	94.01±0.14	94.03±0.16	93.82±0.07	94.09±0.04
	T _{sw} (%)	94.03±0.15	94.20±0.15	94.16±0.16	93.90±0.05	94.18±0.03
HS-NOA63:PET (No.6)	T _{avg} (%)	93.90±0.16	-	-	-	-
	T _{sw} (%)	94.01±0.16				
HS-NOA63:PET (No.7)	T_{avg} (%)	93.87±0.27	-	-	-	-
	T _{sw} (%)	93.96±0.30				
HS-NOA63:PET (No.8)	τ (0/)	02 77+0 10	-	-	-	-
	7 _{avg} (%) T _{sw} (%)	93.77±0.19 93.88±0.20				
	5w (* -7					
Average value for each stamp	T _{avg} (%)	93.94±0.15	94.06±0.14	94.03±0.11	93.96±0.12	93.98±0.09
	T _{sw} (%)	94.05±0.16	94.19±0.12	94.14±0.11	94.06±0.12	94.09±0.09

Table S1. Average total transmittance (T_{avg}) and solar weight transmittance (T_{sw}) of HS-NOA63:PET samples for different RHS-PDMS stamps via one HS-Si mold.

From one HS-Si mold, five HS-NOA63:PET samples or more for each RHS-PDMS stamp were fabricated in the same fabrication process. The transmittance spectra of all the HS-NOA63:PET samples were measured at two or three times in a wavelength range of 380-1100 nm.

(a): Average value, (b): Standard deviation in parentheses