Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information for

Formation and its mechanism of nano-monocrystalline γ -Fe₂O₃ with graphene-shell for

high-performance lithium ion battery

Jiangtao Hu[‡], Wen Li[‡], Chaokun Liu, Hanting Tang, Hua Guo, Tongchao Liu, Xiaohe Song, Jiaxin Zheng, Yidong Liu, Yandong Duan^{*} and Feng Pan^{*}

School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China

* Corresponding author: panfeng@pkusz.edu.cn

‡ Jiangtao Hu and Wen Li contributed equally to this work.

Figure S1. The crystal structure of γ -Fe₂O₃.

Figure S2. The X-ray photoelectron spectroscopy (XPS) spectra (Fe2p spectra) of monocrystal γ-Fe₂O₃@Graphene.

Figure S3. The cycle stability and coulombic efficiency of monocrystalline γ -Fe₂O₃@Graphene at 1C.

Figure S4. The TEM data of monocrystal γ -Fe₂O₃@Graphene after 100 cycles.

Figure S5. (a) EIS data of monocrystal γ -Fe₂O₃@Graphene with the fresh battery; (b and c) EIS data and equivalent circuit of our previous work (Core-Shell Nanohollow- γ -Fe₂O₃@Graphene) and monocrystal γ -Fe₂O₃@Graphene after different cycle numbers.