Supplementary Information

Ion-pair recognition of amidinium salts by partially hydrogen-bonded heteroditopic cyclo[6]aramide

Shanshan Shi, Yumin Zhu, Xiaowei Li, Xiangyang Yuan,

Teng Ma, Wenli Yuan, Guohong Tao, Wen Feng and Lihua Yuan*

College of Chemistry, Key Laboratory for Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China

> *E-mail:* <u>lhyuan@scu.edu.cn</u> *Fax:* +86 28 85418755; *Tel:* +86-28-85412890

Contents

1.	Synthesis of heteroditopic cyclo[6]aramides 1aS3
2.	¹ H NMR spectra of new compounds ······S4
3.	Host-guest complexation of 1a and G1, G6 and G7S5
4.	Host-guest complexation of 1a and G2 ······S12
5.	Host-guest complexation of 1a and G3 ······S13
6.	Host-guest complexation of 1a and G4S16
7.	Host-guest complexation of 1a and TBACl
8.	Host-guest complexation of 1a and G5 ······S22
9.	HRESI-MS for complex ······S25
10.	FT-IR transform infrared spectra of 1a and G1, G3 ·······S27
11.	2D NOESY spectrum of 1a•G2 ······S29
12.	Electrical conductivity of guests and complex ····································
13.	Molecular modelling of 1b with G1 and G2 ·······S30
14.	References ······S38

1. Synthesis of heteroditopic cyclo[6]aramides 1a

Scheme S1. Synthetic routes for heteroditopic cyclo[6]aramides 1a.

Cyclo[6]aramide **1a** was synthesized following a literature procedure.^{S1}

Compounds **3** and **7** were converted into **4** and **8**, respectively by catalytic hydrogenation. Compounds **4** and **8** were used directly in the subsequent reaction without further purification.

Compounds 3^{S^2} , 5^{S^3} and 10^{S^4} were synthesized according to an analogous literature procedure.

2. ¹H NMR spectra of new compounds

Figure S1. ¹H NMR spectrum of cyclo[6]aramide 1a (400 MHz, CDCl₃, 298 K).

Figure S2. ¹³C NMR spectrum (101 MHz, CDCl₃) of cyclo[6]aramide 1a at 298 K.

3. Host-guest complexation of 1a and G1, G6 and G7

Figure S3. Determination of the binding constant of $1a \cdot G1$ in CDCl₃-CD₃OD (v/v, 9:1) at 298 K. Fitting result based on H_b of 1a.

Figure S4. Mole ratio plot for the complexation between 1a and G1, indicating a 1:1 stoichiometry.

Figure S5. Job's plot for the complexation of **1a** and **G1** in CDCl₃-CD₃OD (v/v, 9:1) based on the absorbance at 365 nm, indicating a 1:1 stoichiometry. The total concentration is 3×10^{-4} M.

Table S1. The chemical shifts δ (ppm) for the 1:1 solution of 1a and G1 in CDCl₃-CD₃OD (v/v, 9:1).

	1 a	1a+G1	
Protons	S (nnm)	S (nnm)	$\Delta \delta = \delta_b - \delta_f$
	$o_{\rm f}(\rm ppm)$	o _b (ppm)	(ppm)
H_{c}	9.26	9.49	0.23
H_b	9.12	9.23	0.11
H_d	9.42	9.39	-0.03
$\mathrm{H_{f}}$	10.32	10.45	0.13
H_{g}	8.02	8.48	0.46
H_k	8.23	8.89	0.66

2.0 equiv	┨ _f		H _c	d H	b	H _k F	IgH _i H ₄	H
1.8 equiv							m	
1.6 equiv							m	
1.4 equiv							m	
1.2 equiv							Å	
1.0 equiv	•						k	
0.8 equiv							, in the second	
0.6 equiv			1				,	
0.4 equiv						,	in in	
0.2 equiv			٨	, , , ,			n'i	
0 equiv				1			<u> </u>	
10.9 10.7 10.4	5 10.3 10.7	1 9.9 9.	7 9.5 f1 (9.3 ppm)	9.1	8.9 8.7	8.5 8.3	8.1 7.9

Figure S6. Partial stacked ¹H NMR spectra (400 MHz, 298 K) of cyclo[6]aramide **1a** (1.0 mM) titrated by **G6** (0-2.0 equiv) in CDCl₃-CD₃OD (v/v, 9:1).

Figure S7. Determination of the binding constant of $1a \cdot G6$ in CDCl₃-CD₃OD (v/v, 9:1) at 298 K. Fitting result based on H_b of 1a.

Figure S8. Mole ratio plot for the complexation between 1a and G6, indicating a 1:1 stoichiometry.

Table S2. The chemical shifts δ (ppm) for the 1:1 solution of **1a** and **G6** in CDCl₃-CD₃OD (v/v, 9:1).

	1 a	1a+G6	
Protons	$\delta_f(ppm)$	S. (nnm)	$\Delta \delta = \delta_b - \delta_f$
_		o _b (ppm)	(ppm)
H _c	9.26	9.48	0.22

H _b	9.12	9.20	0.08
H_d	9.42	9.40	-0.02
${ m H_{f}}$	10.32	10.44	0.12
H_{g}	8.02	8.50	0.48
H_k	8.23	8.83	0.60

∣⊖ I

 $1H_2$

Figure S9. Partial stacked ¹H NMR spectra (400 MHz, 298 K) of cyclo[6]aramide **1a** (1.0 mM) titrated by **G7** (0-2.0 equiv) in CDCl₃-CD₃OD (v/v, 9:1).

Figure S10. Determination of the binding constant of $1a \bullet G7$ in CDCl₃-CD₃OD (v/v, 9:1) at 298 K. Fitting result based on H_b of 1a.

Figure S11. Mole ratio plot for the complexation between 1a and G7, indicating a 1:1 stoichiometry.

Table S3. The chemical shifts δ (ppm) for the 1:1 solution of **1a** and **G7** in CDCl₃-CD₃OD (v/v, 9:1).

	1 a	1a+G7	
Protons	$\delta_{f}(ppm)$	S. (nnm)	$\Delta \delta = \delta_b - \delta_f$
_		o _b (ppm)	(ppm)
H _b	9.12	9.19	0.07

H _d	9.42	9.60	0.18
${ m H_{f}}$	10.32	10.37	0.05
H_{g}	8.02	8.52	0.50
H_k	8.23	8.45	0.22

Figure S12. Determination of the binding constant of $1a \bullet G2$ in CDCl₃-CD₃OD (v/v, 9:1) at 298 K. Fitting result based on H_d of 1a.

Figure S13. Mole ratio plot for the complexation between 1a and G2, indicating a 1:1 stoichiometry.

Table S4. The chemical shifts δ (ppm) for the 1:1 solution of 1a and G2 in CDCl₃-CD₃OD (v/v, 9:1).

	1 a	1a+G2	
Protons	$\delta_{1}(\mathbf{n}\mathbf{n}\mathbf{m})$	S. (nnm)	$\Delta \delta = \delta_b - \delta_f$
	o _f (ppm)	o _b (ppm)	(ppm)
H _b	9.12	9.07	-0.05
H_d	9.42	9.57	0.15
H_{g}	8.02	8.36	0.34
H_i	8.51	8.33	-0.18
H_k	8.23	8.31	0.08

Figure S14. Partial stacked ¹H NMR spectra (400 MHz, 298 K) of cyclo[6]aramide **1a** (1.0 mM) titrated by **G3** (0-2.0 equiv) in CDCl₃-CD₃OD (v/v, 9:1).

Figure S15. Determination of the binding constant of $1a \bullet G3$ in CDCl₃-CD₃OD (v/v, 9:1) at 298 K. Fitting result based on H_d of 1a.

Figure S16. Mole ratio plot for the complexation between 1a and G3, indicating a 1:1 stoichiometry.

Figure S17. Job's plot for the complexation of **1a** and **G3** in CDCl₃-CD₃OD (v/v, 9:1) based on the absorbance at 365 nm, indicating a 1:1 stoichiometry. The total concentration is 3×10^{-4} M.

Table S5. The chemical shifts δ (ppm) for the 1:1 solution of 1a and G3 in CDCl₃-CD₃OD (v/v, 9:1).

	1a	1a+G3	
Protons	S (nnm)	δ_b (ppm)	$\Delta \delta = \delta_b - \delta_f$
	o _f (ppm)		(ppm)
H _b	9.12	9.10	-0.02
H_d	9.42	9.50	0.08
H _g	8.02	8.12	0.10
H_i	8.51	8.42	-0.11
H _k	8.23	8.31	0.08

Figure S18. Partial stacked ¹H NMR spectra (400 MHz, 298 K) of cyclo[6]aramide **1a** (1.0 mM) titrated by **G4** (0-2.0 equiv) in CDCl₃-CD₃OD (v/v, 9:1).

Figure S19. Determination of the binding constant of $1a \cdot G4$ in CDCl₃-CD₃OD (v/v, 9:1) at 298 K. Fitting result based on H_b of 1a.

Figure S20. Mole ratio plot for the complexation between 1a and G4, indicating a 1:1 stoichiometry.

Figure S21. Job's plot for the complexation of **1a** and **G4** in CDCl₃-CD₃OD (v/v, 9:1) based on the absorbance at 365 nm, indicating a 1:1 stoichiometry. The total concentration is 3×10^{-4} M.

Table S6. The chemical shifts δ (ppm) for the 1:1 solution of 1a and G4 in CDCl₃-CD₃OD (v/v, 9:1).

Protons	1a	1a+G4	
	S (nnm)	S (nnm)	$\Delta \delta = \delta_b - \delta_f$
	$o_{\rm f}$ (ppm)	o _b (ppm)	(ppm)
H _b	9.12	9.15	0.03
H _c	9.26	9.29	0.03

Figure S22. Partial stacked ¹H NMR spectra (400 MHz, 298 K) of cyclo[6]aramide **1a** (1.0 mM) titrated by **TBACl** (0-2.0 equiv) in CDCl₃-CD₃OD (v/v, 9:1).

Figure S23. Determination of the binding constant of $1a \cdot TBACl$ in CDCl₃-CD₃OD (v/v, 9:1) at 298 K. Fitting result based on H_d of 1a.

Figure S24. Mole ratio plot for the complexation between **1a** and **TBACl**, indicating a 1:1 stoichiometry.

Figure S25. Job's plot for the complexation of 1a and TBACl in $CDCl_3-CD_3OD$ (v/v, 9:1) based on the absorbance at 365 nm, indicating a 1:1 stoichiometry. The total concentration is 3×10^{-4} M.

Table S7. The chemical shifts δ (ppm) for the 1:1 solution of **1a** and **TBACl** in CDCl₃-CD₃OD (v/v, 9:1).

Protons	1 a	1a+TBACl	
	S (nnm)	S (nnm)	$\Delta \delta = \delta_b - \delta_f$
	o _f (ppm)	o _b (ppm)	(ppm)
H _b	9.12	9.13	0.01
H_d	9.42	9.44	0.02

G5= Pentamidine isethionate

Figure S26. Partial stacked ¹H NMR spectra (400 MHz, 298 K) of **G5** (1.0 mM) titrated by cyclo[6]aramide **1a** (0-2.0 equiv) in $CDCl_3-CD_3OD$ (v/v, 9:1).

Figure S27. Determination of the binding constant of $1a \cdot G5$ in CDCl₃-CD₃OD (v/v, 9:1) at 298 K. Fitting result based on H⁷ of G5.

Figure S28. Mole ratio plot for the complexation between 1a and G5, indicating a 1:1 stoichiometry.

	G5	1a +G5	
Protons	S (nnm)	S (nnm)	$\Delta \delta = \delta_b - \delta_f$
_	o _f (ppm)	o _b (ppm)	(ppm)
H ₇	7.69	7.88	0.18
H_8	6.99	6.85	-0.14

Table S8. The chemical shifts δ (ppm) for the 1:1 solution of **1a** and **G5** in CDCl₃-CD₃OD (v/v, 9:1).

Figure S29. Partial ¹H NMR spectra (9:1, $CDCl_3-CD_3OD$, 298 K, 400 MHz) of (a) 5.0 mM cyclo[6]aramide **1a**•G5, (b) 1.0 mM G5.

9. HRESI-MS for complex

Figure S30. The HRESI-MS spectrum of an equimolar solution of 1a and G1 in methanol in the positive ion mode.

Figure S31. The HRESI-MS spectrum of an equimolar solution of 1a and G1 in methanol in the negative ion mode.

Figure S32. The HRESI-MS spectrum of an equimolar solution of 1a and G3 in methanol in the positive ion mode.

Figure S33. The HRESI-MS spectrum of an equimolar solution of 1a and G3 in methanol in the negative ion mode.

10.FT-IR transform infrared spectra of 1a and G1, G3

Figure S34. FT-IR transform infrared spectra of 1a (a), complex $1a \bullet G1$ (b) and amidinium halide G1 (c).

Figure S35. FT-IR transform infrared spectra of 1a (a), complex $1a \bullet G3$ (b) and amidinium halide G3 (c).

Table S9. The infrared wave numbers of (C=O) shifts v (cm⁻¹) for the 1:1 solution of **1a** and **Guest** in solid.

Guast	1 a	1a+Guest	
Guest —	$v_{\rm f}({\rm cm}^{-1})$	$v_{\rm b} ({\rm cm}^{-1})$	$\Delta v = v_{b} - v_{f}$

			(cm^{-1})
G1	1662	1647	15
G2	1662	1648	14
G3	1662	1649	13

11. 2D NOESY spectrum of 1a•G2

Figure S36. 2D NOESY spectrum (1:1, CDCl₃-CD₃CN, 400 MHz) between 1a and G2 (10 mM for each) at 298 K.

12. Electrical conductivity of guests and complex

The conductivity measurements were performed with a conductometer (DDSJ-308A, cell constant=1.0 cm⁻¹) with an uncertainty of 0.1%, and a dipping-type conductivity cell with platinised electrodes (DJS-1C) and under nitrogen atmosphere and at a fixed frequency of 1 MHz.^{S5} The cell constant was obtained with aqueous KCl solution (10 mM). 5 mL of solution with mixed organic solvent (1:1, CHCl₃-CH₃CN, HPLC) containing different guests or complex (5 mM) was placed in the conductivity cell and the cell was closed. The temperature of the sample was maintained at 298.15±0.03 K with circulating water from a thermostatically regulated bath (Julabo, ED) around the sample holder with double wall. The specific conductance for mixed solvent is 0.9 μ S cm⁻¹.

The electrical conductivities (σ) of the guest and complex at different concentrations are given in Table S8.

Table S10. The electrical conductivity σ values were obtained in CDCl₃-CD₃CN (v/v, 1:1) at 298 K.

	Guest	1a+Guest
_	$\sigma/\mu S \text{ cm}^{-1}$	$\sigma/\mu S \text{ cm}^{-1}$
DBACI	63.4	52.3
DBAH	594.5	568.2

13. Molecular modelling of 1b with G1 and G2

The CT complex structure $1b \cdot G1$ was optimized by the density functional theory (DFT) method at the RB3PW91/6-31G (d, p) level by employing the Gaussian09 program.^{S6}

S30

Figure S37. Side view a) and top view b) of optimized geometry of **1b**•G1 at the RB3PW91/6-31G (d, p) level. The plane of G1 is vertical to cyclo[6]aramide (gray = C, white = H, red = O and blue = N). All side chains are replaced by methyl groups for simplicity. The dashed green lines indicate intermolecular H-bonds **D-K** and with **D**= 1.888 Å, **E** = 1.965 Å, **F** = 1.889 Å, **G**= 2.311 Å, **H**= 2.283 Å, **I**= 1.982 Å, **J**= 2.308 Å and **K**= 2.464 Å.

Center Number	Atomic Number	Atomic type	coordinates (Angstro		roms)
		r ttollite type	Х	Y	Z
1	6	0	5.049631	2.705688	-0.08548
2	6	0	3.278207	-4.69379	-0.08228
3	6	0	5.918264	3.801073	-0.17373
4	6	0	5.415647	5.080108	-0.3801
5	6	0	4.047387	5.309669	-0.49843
6	6	0	3.146827	4.224002	-0.40742
7	6	0	3.676309	2.942861	-0.2085
8	6	0	1.947588	-4.28466	-0.22712
9	6	0	0.899571	-5.1923	-0.42249
10	6	0	1.216404	-6.56782	-0.50149
11	6	0	2.539604	-6.97957	-0.36819
12	6	0	3.561887	-6.06301	-0.15587
13	6	0	1.647791	4.315255	-0.46017
14	8	0	0.954241	3.299811	-0.58081
15	7	0	1.101979	5.557154	-0.3099
16	6	0	-0.24931	5.90667	-0.19336
17	6	0	-0.48219	-4.59513	-0.47853
18	7	0	-1.52316	-5.47217	-0.32197
19	8	0	-0.64362	-3.37984	-0.60271
20	6	0	-2.88796	-5.19801	-0.1909
21	6	0	-0.53677	7.263608	0.062644
22	6	0	-1.8532	7.687647	0.236395
23	6	0	-2.90079	6.769355	0.15124
24	6	0	-2.62984	5.420123	-0.12112
25	6	0	-1.30739	5.004639	-0.28797
26	6	0	-3.45269	-3.92747	-0.2821
27	6	0	-4.82427	-3.73108	-0.1031
28	6	0	-5.65027	-4.82622	0.184095
29	6	0	-5.10234	-6.10725	0.26956
30	6	0	-3.73484	-6.29485	0.079858
31	7	0	-3.72088	4.530609	-0.12944
32	6	0	-3.72786	3.275247	-0.64513
33	6	0	-4.87989	2.375995	-0.29317

Table S11. Atomic coordinates for the optimized structure of the complex $1b \cdot G1$. The plane of G1 is vertical to 1b.

S31

34	7	0	-5.41909	-2.45387	-0.10594
35	6	0	-4.91696	-1.34832	-0.70906
36	6	0	-5.49156	-0.01466	-0.32126
37	6	0	-5.98634	2.632526	0.541759
38	6	0	-6.83968	1.588775	0.920196
39	6	0	-6.58428	0.271285	0.521753
40	6	0	-4.72223	1.066608	-0.72786
41	8	0	-2.79504	2.830739	-1.32208
42	8	0	-3.95464	-1.39622	-1.48208
43	8	0	-7.3608	-0.77112	0.911996
44	8	0	-6.17963	3.91264	0.949753
45	6	0	-7.24422	4.213968	1.83651
46	6	0	-8.4489	-0.54437	1.792454
47	8	0	-6.97351	-4.53835	0.384044
48	6	0	-7.84956	-5.60824	0.665778
49	8	0	-3.11793	-7.511	0.148593
50	6	0	-3.90018	-8.64316	0.460375
51	8	0	-4.21927	7.085607	0.33517
52	6	0	-4.54901	8.430961	0.60655
53	8	0	0.54631	8.092029	0.132037
54	6	0	0.330082	9.457132	0.41801
55	8	0	0.192878	-7.45542	-0.71548
56	6	0	0.494062	-8.83084	-0.83644
57	8	0	3.528085	6.560892	-0.70667
58	6	0	4.412492	7.656404	-0.83645
59	7	0	5.497595	1.386575	0.103674
60	7	0	4.274356	-3.71966	0.111966
61	6	0	5.510972	-3.95603	0.654104
62	8	0	5.881833	-5.06612	1.031563
63	6	0	6.447954	-2.78226	0.750712
64	6	0	6.712488	1.036356	0.634643
65	6	0	7.011087	-0.43286	0.741483
66	8	0	7.552163	1.861034	0.994311
67	6	0	7.793815	-3.0998	0.918204
68	6	0	8.753922	-2.08884	1.004157
69	6	0	8.364138	-0.7553	0.91075
70	6	0	6.049709	-1.44102	0.687745
71	1	0	6.98186	3.644931	-0.06385
72	1	0	6.117492	5.902864	-0.44923
73	1	0	2.981433	2.114093	-0.13189
74	1	0	1.69821	-3.22967	-0.18074
75	1	0	2.795835	-8.03083	-0.42838
76	1	0	4.580273	-6.40215	-0.03156
77	1	0	1.757729	6.329974	-0.25476

S32

78	1	0	-1.27346	-6.45449	-0.26922
79	1	0	-2.06176	8.728966	0.440884
80	1	0	-1.08964	3.971783	-0.49664
81	1	0	-2.80505	-3.09439	-0.4971
82	1	0	-5.73846	-6.95493	0.485305
83	1	0	-4.5671	4.855105	0.321484
84	1	0	-6.29063	-2.35863	0.399835
85	1	0	-7.69243	1.79943	1.550405
86	1	0	-3.90492	0.866291	-1.40146
87	1	0	-7.16852	5.28246	2.037835
88	1	0	-7.14842	3.659329	2.776975
89	1	0	-8.21628	4.000558	1.377116
90	1	0	-9.19835	0.11229	1.335768
91	1	0	-8.11052	-0.11656	2.743243
92	1	0	-8.89202	-1.52346	1.974072
93	1	0	-8.84299	-5.16952	0.772507
94	1	0	-7.86912	-6.33927	-0.15263
95	1	0	-7.58025	-6.11969	1.599421
96	1	0	-3.21338	-9.49016	0.48748
97	1	0	-4.38266	-8.54242	1.44127
98	1	0	-4.6673	-8.82726	-0.30305
99	1	0	-5.63516	8.465136	0.705075
100	1	0	-4.09177	8.780495	1.541559
101	1	0	-4.24499	9.093988	-0.21352
102	1	0	1.316055	9.922921	0.443925
103	1	0	-0.27536	9.941579	-0.359
104	1	0	-0.1553	9.593383	1.393067
105	1	0	-0.45831	-9.32779	-1.02532
106	1	0	0.938346	-9.23077	0.083439
107	1	0	1.172219	-9.01795	-1.67736
108	1	0	3.781481	8.527521	-1.01649
109	1	0	4.998624	7.81311	0.077367
110	1	0	5.09252	7.521159	-1.68563
111	1	0	4.883684	0.653284	-0.26916
112	1	0	4.056097	-2.78929	-0.26088
113	1	0	8.0903	-4.1405	0.985457
114	1	0	9.067892	0.066131	0.969768
115	1	0	5.000356	-1.18995	0.593883
116	6	0	11.04183	-1.51326	1.261051
117	1	0	11.09753	-0.90512	0.348648
118	1	0	10.87974	-0.84905	2.119972
119	1	0	11.98438	-2.04724	1.39349
120	8	0	10.04057	-2.50468	1.169403
121	7	0	-1.52587	0.163398	-1.47436

122	1	0	-1.78468	1.149225	-1.434
123	1	0	-2.28231	-0.51827	-1.52102
124	17	0	3.458871	-0.84456	-1.29708
125	7	0	0.769139	0.536269	-1.37202
126	1	0	0.712534	1.547865	-1.24239
127	1	0	1.712231	0.090688	-1.36037
128	6	0	-0.27315	-0.24086	-1.45018
129	1	0	-0.09996	-1.31575	-1.48665

The CT complex structure $1b \cdot G2$ was optimized by the density functional theory (DFT) method at the RB3PW91/6-31G (d, p) level by employing the Gaussian09 program.

Figure S38. Side view a) and top view b) of optimized geometry of $1b \cdot G2$ at the RB3PW91/6-31G (d, p) level. The plane of G2 is vertical to cyclo[6]aramide (gray = C, white = H, red = O and blue = N). All side chains are replaced by methyl groups for simplicity. The dashed green lines indicate intermolecular H-bonds D'-K' and with D'= 1.888 Å, E' = 1.965 Å, F' = 1.889 Å, G' = 2.311 Å, H' = 2.283 Å, I' = 1.982 Å, J' = 2.308 Å and K' = 2.464 Å.

Table S12. Atomic coordinates for the optimized structure of the complex 1b•G2. The plane of G2 is vertical to 1b.

Center Number	Atomic Number	Atomic type	Coordinates (Angstroms)

			Х	Y	Ζ
1	6	0	-5.20305	2.63862	-0.03367
2	6	0	-3.1733	-4.67536	-0.76561
3	6	0	-6.08018	3.725325	-0.15665
4	6	0	-5.58496	5.023302	-0.1995
5	6	0	-4.21976	5.28278	-0.12764
6	6	0	-3.31208	4.205489	-0.00821
7	6	0	-3.82956	2.906012	0.037558
8	6	0	-1.85435	-4.27703	-0.51164
9	6	0	-0.76054	-5.12638	-0.71913
10	6	0	-1.00646	-6.42423	-1.2218
11	6	0	-2.3129	-6.81652	-1.497
12	6	0	-3.38753	-5.96427	-1.27385
13	6	0	-1.81436	4.317435	0.069736
14	8	0	-1.12612	3.348617	0.402171
15	7	0	-1.27154	5.520262	-0.28681
16	6	0	0.079832	5.872568	-0.38048
17	6	0	0.588074	-4.53962	-0.39437
18	7	0	1.648309	-5.40717	-0.3654
19	8	0	0.704949	-3.33813	-0.15471
20	6	0	2.998537	-5.11277	-0.14908
21	6	0	0.375155	7.180058	-0.81817
22	6	0	1.698483	7.594143	-0.96546
23	6	0	2.743809	6.717056	-0.67282
24	6	0	2.462869	5.417728	-0.22452
25	6	0	1.134447	5.010507	-0.08886
26	6	0	3.503063	-3.83558	0.091882
27	6	0	4.872563	-3.6205	0.261141
28	6	0	5.762901	-4.69821	0.176583
29	6	0	5.273874	-5.98574	-0.05368
30	6	0	3.905039	-6.19394	-0.20904
31	7	0	3.554553	4.556935	-0.00673
32	6	0	3.515132	3.36209	0.635787
33	6	0	4.711909	2.465265	0.529517
34	7	0	5.413579	-2.3284	0.412422
35	6	0	4.776165	-1.26421	0.96657
36	6	0	5.363083	0.095699	0.711229
37	6	0	6.035772	2.787357	0.177303
38	6	0	7.00914	1.782904	0.104668
39	6	0	6.679089	0.445024	0.356055
40	6	0	4.438948	1.127239	0.781702
41	8	0	2.511316	2.962348	1.234049
42	8	0	3.706834	-1.36287	1.571622
43	8	0	7.584825	-0.56336	0.275912

44	8	0	6.307191	4.093483	-0.07762
45	6	0	7.626734	4.475841	-0.42591
46	6	0	8.928666	-0.26795	-0.06445
47	8	0	7.089356	-4.38801	0.30981
48	6	0	8.027856	-5.43736	0.21667
49	8	0	3.343453	-7.41842	-0.43518
50	6	0	4.184591	-8.55096	-0.44463
51	8	0	4.070724	7.02589	-0.80769
52	6	0	4.407984	8.30589	-1.29747
53	8	0	-0.70538	7.972794	-1.08056
54	6	0	-0.47744	9.275551	-1.57251
55	8	0	0.06606	-7.25382	-1.43073
56	6	0	-0.16013	-8.54231	-1.9641
57	8	0	-3.71175	6.556266	-0.15969
58	6	0	-4.60649	7.64706	-0.24527
59	7	0	-5.62915	1.302304	0.019425
60	7	0	-4.21552	-3.76957	-0.50206
61	6	0	-5.55787	-4.04397	-0.58093
62	8	0	-6.01502	-5.13524	-0.9153
63	6	0	-6.49448	-2.9304	-0.20606
64	6	0	-6.92752	0.865756	-0.04187
65	6	0	-7.13799	-0.61827	0.045254
66	8	0	-7.89882	1.615456	-0.13908
67	6	0	-7.74938	-3.32609	0.250585
68	6	0	-8.70381	-2.37223	0.610724
69	6	0	-8.39949	-1.01753	0.505017
70	6	0	-6.18934	-1.56923	-0.32856
71	1	0	-7.14326	3.541551	-0.21356
72	1	0	-6.29361	5.838381	-0.28824
73	1	0	-3.12676	2.083561	0.124109
74	1	0	-1.64984	-3.27628	-0.14154
75	1	0	-2.51802	-7.80523	-1.89044
76	1	0	-4.39628	-6.29143	-1.47893
77	1	0	-1.93	6.261585	-0.50241
78	1	0	1.447336	-6.37127	-0.60865
79	1	0	1.914086	8.597407	-1.30694
80	1	0	0.908893	4.014635	0.249447
81	1	0	2.811365	-3.01013	0.146338
82	1	0	5.957048	-6.82161	-0.11606
83	1	0	4.448892	4.866118	-0.36646
84	1	0	6.363112	-2.1886	0.092309
85	1	0	8.026334	2.042354	-0.15372
86	1	0	3.419706	0.85876	1.007487
87	1	0	7.593976	5.555121	-0.57375

88	1	0	7.952065	3.991969	-1.35437
89	1	0	8.332897	4.242956	0.379327
90	1	0	9.387957	0.39803	0.675106
91	1	0	9.00013	0.182011	-1.06174
92	1	0	9.452625	-1.22364	-0.06165
93	1	0	9.009971	-4.98204	0.354018
94	1	0	7.872808	-6.19	1.000524
95	1	0	7.994215	-5.92835	-0.76494
96	1	0	3.533639	-9.41328	-0.59481
97	1	0	4.915177	-8.50745	-1.26309
98	1	0	4.716384	-8.66632	0.508529
99	1	0	5.497664	8.339783	-1.34077
100	1	0	4.003582	8.474485	-2.30395
101	1	0	4.053697	9.100523	-0.62841
102	1	0	-1.46153	9.715913	-1.73793
103	1	0	0.073193	9.890774	-0.84903
104	1	0	0.070462	9.257566	-2.52342
105	1	0	0.824438	-9.00152	-2.06001
106	1	0	-0.63174	-8.48918	-2.95264
107	1	0	-0.78283	-9.15236	-1.29829
108	1	0	-3.98445	8.542767	-0.23507
109	1	0	-5.19068	7.619643	-1.17327
110	1	0	-5.28936	7.671107	0.61212
111	1	0	-4.90205	0.613485	0.24657
112	1	0	-3.93176	-2.87431	-0.09297
113	1	0	-7.98646	-4.38199	0.315498
114	1	0	-9.11015	-0.23886	0.753857
115	1	0	-5.23121	-1.25962	-0.72743
116	6	0	-10.8924	-1.92989	1.414682
117	1	0	-10.568	-1.29038	2.245992
118	1	0	-11.1818	-1.2923	0.569296
119	1	0	-11.7552	-2.51813	1.73157
120	8	0	-9.89589	-2.86206	1.051165
121	6	0	0.239657	0.013996	2.159272
122	7	0	1.460507	0.493546	2.375178
123	1	0	1.721918	1.432937	2.073577
124	1	0	2.220999	-0.17436	2.465473
125	6	0	-0.0122	-1.43246	2.433022
126	1	0	0.520674	-1.7423	3.334675
127	1	0	-1.08124	-1.62076	2.537491
128	1	0	0.354393	-2.02874	1.589298
129	17	0	-3.21909	-0.83325	0.858501
130	7	0	-0.74391	0.763072	1.729927
131	1	0	-0.6292	1.724567	1.414581

132	1	0	-1.64637	0.30118	1.505566

14. References

(S1) Hu, J. C.; Chen, L.; Shen, J.; Luo, J.; Deng, P. C.; Ren, Y.; Zeng, H. Q.; Feng W.; Yuan, L. H. *Chem. Commun.* **2014**, 50, 8024.

(S2) Gao, R. Z.; Hu, J. C.; Zhang, K.; He, Y. Z.; Liu, P.; Luo, S. Z.; Yang, Y. Q.; Yang, L.; Feng,
W.; Yuan, L. H. *Chinese J. Chem.* 2013, 31, 689.

(S3) Li, X. H.; Fang, Y. Y.; Deng, P. C.; Hu, J. C.; Li, T.; Feng, W.; Yuan, L. H. Org. Lett. **2011**, 13, 4628.

(S4) Kidd, T. J.; Leigh, D. A.; Wilson, A. J. J. Am. Chem. Soc. 1999, 121, 1599.

(S5) B. Datta and M. N. Roy, Phys. Chem. Liq., 2015, 53, 574.

(S6) Gaussian 09, Revision B.01, Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A., Jr.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, O.J.; Foresman, B.; Ortiz, J.V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2010**.