Supporting Information

Effect of Interlayer Spacing on Sodium Ion Insertion in Nanostructured

Titanium Hydrogeno Phosphates/Carbon Nanotube Composites

Gyeonghee Lee,^a Xiao Zhang,^a Hongbo Zhang,^a Chakrapani V. Varanasi^{*b} and Jie Liu^{*a}

^a Department of Chemistry, Duke University, Durham, North Carolina 27708, United States

^b Army Research Office, Durham, North Carolina 27703, United States Email: chakrapani.v.varanasi.civ@mail.mil, j.liu@duke.edu

Figure S1: (A) XRD patterns of *nano*-TiP-H₂O-CNT and *nano*-TiP-CNT, (B) FT-IR spectra of *bulk*-TiP-H₂O, *bulk*-TiP, (C) *nano*-TiP-H₂O, and *nano*-TiP.

Figure S2: Comparisons of (A) CV curves measured at 0.1 mV s⁻¹ and (B) specific capacity of *bulk*-TiP-H₂O, *bulk*-TiP, *nano*-TiP-H₂O, and *nano*-TiP at various current rates of 0.1, 0.2, and 0.5 C.

Figure S3: Charge-discharge curves of *nano*-TiP-CNT, *nano*-TiP-H₂O, *nano*-TiP, *bulk*-TiP-H₂O, and *bulk*-TiP at various current rates of 0.1, 0.2, 0.5, 1.0, 2.0, and 5.0 C.

Figure S4: N₂ adsorption and desorption isotherms of *bulk*-TiP-H₂O and *nano*-TiP-H₂O.

Figure S5: Charge and discharge capacity changes of *nano*-TiP-H₂O, *nano*-TiP, *nano*-TiP-H₂O-CNT, and *nano*-TiP-CNT during long term cycle tests performed at 2.0 C.

The Na-ion diffusion coefficient was calculated using the following equation:

$D_{Na^+} = R^2 T^2 / 2A^2 n^4 F^4 C^2 \sigma^2$

where D_{Na^+} is the Na-ion diffusion coefficient, *R* is gas constant, *T* is the temperature, *n* represents the number of electrons per molecule during Na-ion insertion, *F* is Faraday constant, *A* (0.64 cm²) is the area of the interface between the electrode and electrolyte, *C* is the concentration of Na-ion.¹ The Warburg coefficient, σ can be determined from the relationship between the real part of Z and square root frequency, $1/\omega^{1/2}$ ($\omega = 2\pi f, f$ is frequency) in the low frequency region (Figure S6).

Figure S6: The diffusion specific plots for *bulk*-TiP, *bulk*-TiP-H₂O, *nano*-TiP, *nano*-TiP-H₂O, *nano*-TiP-CNT, and *nano*-TiP-H₂O-CNT. The real part is plotted vs. $1/\omega^{1/2}$. The slop of the line represents the Warburg coefficient, σ .

Reference

1. L. Wang, J. Zhao, X. He, J. Gao, J. Li, C. Wan, C. Jiang, *Int. J. Electrochem. Sci.*, 2012, 7, 345 – 353.